gem5  v19.0.0.0
process.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010, 2012, 2017-2018 ARM Limited
3  * All rights reserved
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Copyright (c) 2007-2008 The Florida State University
15  * All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions are
19  * met: redistributions of source code must retain the above copyright
20  * notice, this list of conditions and the following disclaimer;
21  * redistributions in binary form must reproduce the above copyright
22  * notice, this list of conditions and the following disclaimer in the
23  * documentation and/or other materials provided with the distribution;
24  * neither the name of the copyright holders nor the names of its
25  * contributors may be used to endorse or promote products derived from
26  * this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  *
40  * Authors: Stephen Hines
41  * Ali Saidi
42  */
43 
44 #include "arch/arm/process.hh"
45 
46 #include "arch/arm/isa_traits.hh"
47 #include "arch/arm/types.hh"
50 #include "base/logging.hh"
51 #include "cpu/thread_context.hh"
52 #include "debug/Stack.hh"
53 #include "mem/page_table.hh"
54 #include "params/Process.hh"
55 #include "sim/aux_vector.hh"
56 #include "sim/byteswap.hh"
57 #include "sim/process_impl.hh"
58 #include "sim/syscall_return.hh"
59 #include "sim/system.hh"
60 
61 using namespace std;
62 using namespace ArmISA;
63 
64 ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
65  ObjectFile::Arch _arch)
66  : Process(params,
67  new EmulationPageTable(params->name, params->pid, PageBytes),
68  objFile),
69  arch(_arch)
70 {
71  fatal_if(params->useArchPT, "Arch page tables not implemented.");
72 }
73 
75  ObjectFile::Arch _arch)
76  : ArmProcess(params, objFile, _arch)
77 {
78  Addr brk_point = roundUp(image.maxAddr(), PageBytes);
79  Addr stack_base = 0xbf000000L;
80  Addr max_stack_size = 8 * 1024 * 1024;
81  Addr next_thread_stack_base = stack_base - max_stack_size;
82  Addr mmap_end = 0x40000000L;
83 
84  memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
85  next_thread_stack_base, mmap_end);
86 }
87 
89  ObjectFile::Arch _arch)
90  : ArmProcess(params, objFile, _arch)
91 {
92  Addr brk_point = roundUp(image.maxAddr(), PageBytes);
93  Addr stack_base = 0x7fffff0000L;
94  Addr max_stack_size = 8 * 1024 * 1024;
95  Addr next_thread_stack_base = stack_base - max_stack_size;
96  Addr mmap_end = 0x4000000000L;
97 
98  memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
99  next_thread_stack_base, mmap_end);
100 }
101 
102 void
104 {
106  argsInit<uint32_t>(PageBytes, INTREG_SP);
107  for (int i = 0; i < contextIds.size(); i++) {
109  CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
110  // Enable the floating point coprocessors.
111  cpacr.cp10 = 0x3;
112  cpacr.cp11 = 0x3;
113  tc->setMiscReg(MISCREG_CPACR, cpacr);
114  // Generically enable floating point support.
115  FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
116  fpexc.en = 1;
117  tc->setMiscReg(MISCREG_FPEXC, fpexc);
118  }
119 }
120 
121 void
123 {
125  argsInit<uint64_t>(PageBytes, INTREG_SP0);
126  for (int i = 0; i < contextIds.size(); i++) {
128  CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
129  cpsr.mode = MODE_EL0T;
130  tc->setMiscReg(MISCREG_CPSR, cpsr);
131  CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
132  // Enable the floating point coprocessors.
133  cpacr.cp10 = 0x3;
134  cpacr.cp11 = 0x3;
135  // Enable SVE.
136  cpacr.zen = 0x3;
137  tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
138  // Generically enable floating point support.
139  FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
140  fpexc.en = 1;
141  tc->setMiscReg(MISCREG_FPEXC, fpexc);
142  }
143 }
144 
145 uint32_t
147 {
148  enum ArmCpuFeature {
149  Arm_Swp = 1 << 0,
150  Arm_Half = 1 << 1,
151  Arm_Thumb = 1 << 2,
152  Arm_26Bit = 1 << 3,
153  Arm_FastMult = 1 << 4,
154  Arm_Fpa = 1 << 5,
155  Arm_Vfp = 1 << 6,
156  Arm_Edsp = 1 << 7,
157  Arm_Java = 1 << 8,
158  Arm_Iwmmxt = 1 << 9,
159  Arm_Crunch = 1 << 10,
160  Arm_ThumbEE = 1 << 11,
161  Arm_Neon = 1 << 12,
162  Arm_Vfpv3 = 1 << 13,
163  Arm_Vfpv3d16 = 1 << 14
164  };
165 
166  return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult |
167  Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon |
168  Arm_Vfpv3 | Arm_Vfpv3d16;
169 }
170 
171 uint32_t
173 {
174  // In order to know what these flags mean, please refer to Linux
175  // /Documentation/arm64/elf_hwcaps.txt text file.
176  enum ArmCpuFeature {
177  Arm_Fp = 1 << 0,
178  Arm_Asimd = 1 << 1,
179  Arm_Evtstrm = 1 << 2,
180  Arm_Aes = 1 << 3,
181  Arm_Pmull = 1 << 4,
182  Arm_Sha1 = 1 << 5,
183  Arm_Sha2 = 1 << 6,
184  Arm_Crc32 = 1 << 7,
185  Arm_Atomics = 1 << 8,
186  Arm_Fphp = 1 << 9,
187  Arm_Asimdhp = 1 << 10,
188  Arm_Cpuid = 1 << 11,
189  Arm_Asimdrdm = 1 << 12,
190  Arm_Jscvt = 1 << 13,
191  Arm_Fcma = 1 << 14,
192  Arm_Lrcpc = 1 << 15,
193  Arm_Dcpop = 1 << 16,
194  Arm_Sha3 = 1 << 17,
195  Arm_Sm3 = 1 << 18,
196  Arm_Sm4 = 1 << 19,
197  Arm_Asimddp = 1 << 20,
198  Arm_Sha512 = 1 << 21,
199  Arm_Sve = 1 << 22,
200  Arm_Asimdfhm = 1 << 23,
201  Arm_Dit = 1 << 24,
202  Arm_Uscat = 1 << 25,
203  Arm_Ilrcpc = 1 << 26,
204  Arm_Flagm = 1 << 27
205  };
206 
207  uint32_t hwcap = 0;
208 
210 
211  const AA64PFR0 pf_r0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1);
212 
213  hwcap |= (pf_r0.fp == 0) ? Arm_Fp : 0;
214  hwcap |= (pf_r0.fp == 1) ? Arm_Fphp | Arm_Fp : 0;
215  hwcap |= (pf_r0.advsimd == 0) ? Arm_Asimd : 0;
216  hwcap |= (pf_r0.advsimd == 1) ? Arm_Asimdhp | Arm_Asimd : 0;
217  hwcap |= (pf_r0.sve >= 1) ? Arm_Sve : 0;
218  hwcap |= (pf_r0.dit >= 1) ? Arm_Dit : 0;
219 
220  const AA64ISAR0 isa_r0 = tc->readMiscReg(MISCREG_ID_AA64ISAR0_EL1);
221 
222  hwcap |= (isa_r0.aes >= 1) ? Arm_Aes : 0;
223  hwcap |= (isa_r0.aes >= 2) ? Arm_Pmull : 0;
224  hwcap |= (isa_r0.sha1 >= 1) ? Arm_Sha1 : 0;
225  hwcap |= (isa_r0.sha2 >= 1) ? Arm_Sha2 : 0;
226  hwcap |= (isa_r0.sha2 >= 2) ? Arm_Sha512 : 0;
227  hwcap |= (isa_r0.crc32 >= 1) ? Arm_Crc32 : 0;
228  hwcap |= (isa_r0.atomic >= 1) ? Arm_Atomics : 0;
229  hwcap |= (isa_r0.rdm >= 1) ? Arm_Asimdrdm : 0;
230  hwcap |= (isa_r0.sha3 >= 1) ? Arm_Sha3 : 0;
231  hwcap |= (isa_r0.sm3 >= 1) ? Arm_Sm3 : 0;
232  hwcap |= (isa_r0.sm4 >= 1) ? Arm_Sm4 : 0;
233  hwcap |= (isa_r0.dp >= 1) ? Arm_Asimddp : 0;
234  hwcap |= (isa_r0.fhm >= 1) ? Arm_Asimdfhm : 0;
235  hwcap |= (isa_r0.ts >= 1) ? Arm_Flagm : 0;
236 
237  const AA64ISAR1 isa_r1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1);
238 
239  hwcap |= (isa_r1.dpb >= 1) ? Arm_Dcpop : 0;
240  hwcap |= (isa_r1.jscvt >= 1) ? Arm_Jscvt : 0;
241  hwcap |= (isa_r1.fcma >= 1) ? Arm_Fcma : 0;
242  hwcap |= (isa_r1.lrcpc >= 1) ? Arm_Lrcpc : 0;
243  hwcap |= (isa_r1.lrcpc >= 2) ? Arm_Ilrcpc : 0;
244 
245  const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1);
246 
247  hwcap |= (mm_fr2.at >= 1) ? Arm_Uscat : 0;
248 
249  return hwcap;
250 }
251 
252 template <class IntType>
253 void
254 ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
255 {
256  int intSize = sizeof(IntType);
257 
259 
260  string filename;
261  if (argv.size() < 1)
262  filename = "";
263  else
264  filename = argv[0];
265 
266  //We want 16 byte alignment
267  uint64_t align = 16;
268 
269  //Setup the auxilliary vectors. These will already have endian conversion.
270  //Auxilliary vectors are loaded only for elf formatted executables.
271  ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
272  if (elfObject) {
273 
274  if (objFile->getOpSys() == ObjectFile::Linux) {
275  IntType features = armHwcap<IntType>();
276 
277  //Bits which describe the system hardware capabilities
278  //XXX Figure out what these should be
279  auxv.emplace_back(M5_AT_HWCAP, features);
280  //Frequency at which times() increments
281  auxv.emplace_back(M5_AT_CLKTCK, 0x64);
282  //Whether to enable "secure mode" in the executable
283  auxv.emplace_back(M5_AT_SECURE, 0);
284  // Pointer to 16 bytes of random data
285  auxv.emplace_back(M5_AT_RANDOM, 0);
286  //The filename of the program
287  auxv.emplace_back(M5_AT_EXECFN, 0);
288  //The string "v71" -- ARM v7 architecture
289  auxv.emplace_back(M5_AT_PLATFORM, 0);
290  }
291 
292  //The system page size
293  auxv.emplace_back(M5_AT_PAGESZ, ArmISA::PageBytes);
294  // For statically linked executables, this is the virtual address of
295  // the program header tables if they appear in the executable image
296  auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable());
297  // This is the size of a program header entry from the elf file.
298  auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize());
299  // This is the number of program headers from the original elf file.
300  auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount());
301  // This is the base address of the ELF interpreter; it should be
302  // zero for static executables or contain the base address for
303  // dynamic executables.
304  auxv.emplace_back(M5_AT_BASE, getBias());
305  //XXX Figure out what this should be.
306  auxv.emplace_back(M5_AT_FLAGS, 0);
307  //The entry point to the program
308  auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint());
309  //Different user and group IDs
310  auxv.emplace_back(M5_AT_UID, uid());
311  auxv.emplace_back(M5_AT_EUID, euid());
312  auxv.emplace_back(M5_AT_GID, gid());
313  auxv.emplace_back(M5_AT_EGID, egid());
314  }
315 
316  //Figure out how big the initial stack nedes to be
317 
318  // A sentry NULL void pointer at the top of the stack.
319  int sentry_size = intSize;
320 
321  string platform = "v71";
322  int platform_size = platform.size() + 1;
323 
324  // Bytes for AT_RANDOM above, we'll just keep them 0
325  int aux_random_size = 16; // as per the specification
326 
327  // The aux vectors are put on the stack in two groups. The first group are
328  // the vectors that are generated as the elf is loaded. The second group
329  // are the ones that were computed ahead of time and include the platform
330  // string.
331  int aux_data_size = filename.size() + 1;
332 
333  int env_data_size = 0;
334  for (int i = 0; i < envp.size(); ++i) {
335  env_data_size += envp[i].size() + 1;
336  }
337  int arg_data_size = 0;
338  for (int i = 0; i < argv.size(); ++i) {
339  arg_data_size += argv[i].size() + 1;
340  }
341 
342  int info_block_size =
343  sentry_size + env_data_size + arg_data_size +
344  aux_data_size + platform_size + aux_random_size;
345 
346  //Each auxilliary vector is two 4 byte words
347  int aux_array_size = intSize * 2 * (auxv.size() + 1);
348 
349  int envp_array_size = intSize * (envp.size() + 1);
350  int argv_array_size = intSize * (argv.size() + 1);
351 
352  int argc_size = intSize;
353 
354  //Figure out the size of the contents of the actual initial frame
355  int frame_size =
356  info_block_size +
357  aux_array_size +
358  envp_array_size +
359  argv_array_size +
360  argc_size;
361 
362  //There needs to be padding after the auxiliary vector data so that the
363  //very bottom of the stack is aligned properly.
364  int partial_size = frame_size;
365  int aligned_partial_size = roundUp(partial_size, align);
366  int aux_padding = aligned_partial_size - partial_size;
367 
368  int space_needed = frame_size + aux_padding;
369 
370  memState->setStackMin(memState->getStackBase() - space_needed);
371  memState->setStackMin(roundDown(memState->getStackMin(), align));
372  memState->setStackSize(memState->getStackBase() - memState->getStackMin());
373 
374  // map memory
375  allocateMem(roundDown(memState->getStackMin(), pageSize),
376  roundUp(memState->getStackSize(), pageSize));
377 
378  // map out initial stack contents
379  IntType sentry_base = memState->getStackBase() - sentry_size;
380  IntType aux_data_base = sentry_base - aux_data_size;
381  IntType env_data_base = aux_data_base - env_data_size;
382  IntType arg_data_base = env_data_base - arg_data_size;
383  IntType platform_base = arg_data_base - platform_size;
384  IntType aux_random_base = platform_base - aux_random_size;
385  IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
386  IntType envp_array_base = auxv_array_base - envp_array_size;
387  IntType argv_array_base = envp_array_base - argv_array_size;
388  IntType argc_base = argv_array_base - argc_size;
389 
390  DPRINTF(Stack, "The addresses of items on the initial stack:\n");
391  DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
392  DPRINTF(Stack, "0x%x - env data\n", env_data_base);
393  DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
394  DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
395  DPRINTF(Stack, "0x%x - platform base\n", platform_base);
396  DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
397  DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
398  DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
399  DPRINTF(Stack, "0x%x - argc \n", argc_base);
400  DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
401 
402  // write contents to stack
403 
404  // figure out argc
405  IntType argc = argv.size();
406  IntType guestArgc = htole(argc);
407 
408  //Write out the sentry void *
409  IntType sentry_NULL = 0;
410  initVirtMem.writeBlob(sentry_base, &sentry_NULL, sentry_size);
411 
412  //Fix up the aux vectors which point to other data
413  for (int i = auxv.size() - 1; i >= 0; i--) {
414  if (auxv[i].type == M5_AT_PLATFORM) {
415  auxv[i].val = platform_base;
416  initVirtMem.writeString(platform_base, platform.c_str());
417  } else if (auxv[i].type == M5_AT_EXECFN) {
418  auxv[i].val = aux_data_base;
419  initVirtMem.writeString(aux_data_base, filename.c_str());
420  } else if (auxv[i].type == M5_AT_RANDOM) {
421  auxv[i].val = aux_random_base;
422  // Just leave the value 0, we don't want randomness
423  }
424  }
425 
426  //Copy the aux stuff
427  Addr auxv_array_end = auxv_array_base;
428  for (const auto &aux: auxv) {
429  initVirtMem.write(auxv_array_end, aux, GuestByteOrder);
430  auxv_array_end += sizeof(aux);
431  }
432  //Write out the terminating zeroed auxillary vector
433  const AuxVector<IntType> zero(0, 0);
434  initVirtMem.write(auxv_array_end, zero);
435  auxv_array_end += sizeof(zero);
436 
437  copyStringArray(envp, envp_array_base, env_data_base,
439  copyStringArray(argv, argv_array_base, arg_data_base,
441 
442  initVirtMem.writeBlob(argc_base, &guestArgc, intSize);
443 
445  //Set the stack pointer register
446  tc->setIntReg(spIndex, memState->getStackMin());
447  //A pointer to a function to run when the program exits. We'll set this
448  //to zero explicitly to make sure this isn't used.
449  tc->setIntReg(ArgumentReg0, 0);
450  //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
451  if (argv.size() > 0) {
452  tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
453  argv[argv.size() - 1].size() - 1);
454  } else {
455  tc->setIntReg(ArgumentReg1, 0);
456  }
457  if (envp.size() > 0) {
458  tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
459  envp[envp.size() - 1].size() - 1);
460  } else {
461  tc->setIntReg(ArgumentReg2, 0);
462  }
463 
464  PCState pc;
465  pc.thumb(arch == ObjectFile::Thumb);
466  pc.nextThumb(pc.thumb());
467  pc.aarch64(arch == ObjectFile::Arm64);
468  pc.nextAArch64(pc.aarch64());
469  pc.set(getStartPC() & ~mask(1));
470  tc->pcState(pc);
471 
472  //Align the "stackMin" to a page boundary.
473  memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
474 }
475 
476 RegVal
478 {
479  assert(i < 6);
480  return tc->readIntReg(ArgumentReg0 + i++);
481 }
482 
483 RegVal
485 {
486  assert(i < 8);
487  return tc->readIntReg(ArgumentReg0 + i++);
488 }
489 
490 RegVal
492 {
493  assert(width == 32 || width == 64);
494  if (width == 32)
495  return getSyscallArg(tc, i);
496 
497  // 64 bit arguments are passed starting in an even register
498  if (i % 2 != 0)
499  i++;
500 
501  // Registers r0-r6 can be used
502  assert(i < 5);
503  uint64_t val;
504  val = tc->readIntReg(ArgumentReg0 + i++);
505  val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
506  return val;
507 }
508 
509 RegVal
511 {
512  return getSyscallArg(tc, i);
513 }
514 
515 void
517 {
518 
520  // Decode return value
521  if (sysret.encodedValue() >= 0)
522  // FreeBSD checks the carry bit to determine if syscall is succeeded
523  tc->setCCReg(CCREG_C, 0);
524  else {
525  sysret = -sysret.encodedValue();
526  }
527  }
528 
529  tc->setIntReg(ReturnValueReg, sysret.encodedValue());
530 }
531 
532 void
534 {
535 
537  // Decode return value
538  if (sysret.encodedValue() >= 0)
539  // FreeBSD checks the carry bit to determine if syscall is succeeded
540  tc->setCCReg(CCREG_C, 0);
541  else {
542  sysret = -sysret.encodedValue();
543  }
544  }
545 
546  tc->setIntReg(ReturnValueReg, sysret.encodedValue());
547 }
#define DPRINTF(x,...)
Definition: trace.hh:229
ObjectFile * objFile
Definition: process.hh:217
virtual void setMiscReg(RegIndex misc_reg, RegVal val)=0
Addr programHeaderTable()
Definition: elf_object.hh:128
Bitfield< 7, 0 > L
Definition: int.hh:59
IntRegIndex
Definition: intregs.hh:53
const std::string & name()
Definition: trace.cc:54
Bitfield< 7 > i
const int ArgumentReg0
Definition: registers.hh:111
virtual TheISA::PCState pcState() const =0
virtual RegVal readIntReg(RegIndex reg_idx) const =0
std::vector< ContextID > contextIds
Definition: process.hh:167
void writeString(Addr addr, const char *str) const
Same as tryWriteString, but insists on success.
Definition: port_proxy.hh:241
void initState() override
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:103
void setSyscallReturn(ThreadContext *tc, SyscallReturn return_value) override
Definition: process.cc:516
void allocateMem(Addr vaddr, int64_t size, bool clobber=false)
Definition: process.cc:333
SETranslatingPortProxy initVirtMem
Definition: process.hh:183
uint64_t uid()
Definition: process.hh:87
void initState() override
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:122
uint64_t RegVal
Definition: types.hh:168
const int ArgumentReg2
Definition: registers.hh:113
Overload hash function for BasicBlockRange type.
Definition: vec_reg.hh:586
Definition: ccregs.hh:42
void initState() override
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:307
void setSyscallReturn(ThreadContext *tc, SyscallReturn return_value) override
Definition: process.cc:533
T roundUp(const T &val, const U &align)
This function is used to align addresses in memory.
Definition: intmath.hh:168
std::shared_ptr< MemState > memState
Definition: process.hh:283
ThreadContext is the external interface to all thread state for anything outside of the CPU...
int64_t encodedValue() const
The encoded value (as described above)
const ByteOrder GuestByteOrder
Definition: isa_traits.hh:42
STL vector class.
Definition: stl.hh:40
Bitfield< 63 > val
Definition: misc.hh:771
ThreadContext * getThreadContext(ContextID tid) const
Definition: system.hh:194
uint8_t type
Definition: inet.hh:333
T htole(T value)
Definition: byteswap.hh:144
Bitfield< 4 > pc
uint32_t armHwcapImpl() const override
AArch64 AT_HWCAP.
Definition: process.cc:172
ArmProcess(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch)
Definition: process.cc:64
void align(const scfx_rep &lhs, const scfx_rep &rhs, int &new_wp, int &len_mant, scfx_mant_ref &lhs_mant, scfx_mant_ref &rhs_mant)
Definition: scfx_rep.cc:2051
void writeBlob(Addr addr, const void *p, int size) const
Same as tryWriteBlob, but insists on success.
Definition: port_proxy.hh:189
const Params * params() const
Definition: sim_object.hh:114
Addr maxAddr() const
ObjectFile::Arch arch
Definition: process.hh:59
void copyStringArray(std::vector< std::string > &strings, AddrType array_ptr, AddrType data_ptr, const ByteOrder bo, PortProxy &memProxy)
Definition: process_impl.hh:43
uint64_t euid()
Definition: process.hh:88
Addr getStartPC()
Definition: process.cc:532
System * system
Definition: process.hh:170
#define fatal_if(cond,...)
Conditional fatal macro that checks the supplied condition and only causes a fatal error if the condi...
Definition: logging.hh:203
T roundDown(const T &val, const U &align)
This function is used to align addresses in memory.
Definition: intmath.hh:185
std::vector< std::string > envp
Definition: process.hh:221
virtual void setCCReg(RegIndex reg_idx, RegVal val)=0
virtual void setIntReg(RegIndex reg_idx, RegVal val)=0
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:142
const Addr PageBytes
Definition: isa_traits.hh:47
uint16_t programHeaderSize()
Definition: elf_object.hh:129
uint32_t armHwcapImpl() const override
AArch32 AT_HWCAP.
Definition: process.cc:146
Declarations of a non-full system Page Table.
uint16_t programHeaderCount()
Definition: elf_object.hh:130
ArmProcess64(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch)
Definition: process.cc:88
GenericISA::SimplePCState< MachInst > PCState
Definition: types.hh:43
RegVal getSyscallArg(ThreadContext *tc, int &i, int width) override
Definition: process.cc:510
void argsInit(int pageSize, ArmISA::IntRegIndex spIndex)
Definition: process.cc:254
OpSys getOpSys() const
Definition: object_file.hh:125
Addr entryPoint() const
Definition: object_file.hh:131
Bitfield< 4 > width
ArmProcess32(ProcessParams *params, ObjectFile *objFile, ObjectFile::Arch _arch)
Definition: process.cc:74
uint64_t gid()
Definition: process.hh:89
const Addr PageBytes
Definition: isa_traits.hh:59
Bitfield< 3, 0 > mask
Definition: types.hh:64
void write(Addr address, const T &data) const
Write object T to address.
Definition: port_proxy.hh:293
const RegIndex ReturnValueReg
Definition: registers.hh:81
std::vector< std::string > argv
Definition: process.hh:220
This class represents the return value from an emulated system call, including any errno setting...
RegVal getSyscallArg(ThreadContext *tc, int &i, int width) override
Definition: process.cc:491
virtual RegVal readMiscReg(RegIndex misc_reg)=0
const int ArgumentReg1
Definition: registers.hh:112
Addr getBias()
Definition: process.cc:524
MemoryImage image
Definition: process.hh:218
uint64_t egid()
Definition: process.hh:90

Generated on Fri Feb 28 2020 16:26:56 for gem5 by doxygen 1.8.13