gem5  v22.0.0.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
cpu_impl.hh
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011, 2016 ARM Limited
3  * Copyright (c) 2013 Advanced Micro Devices, Inc.
4  * All rights reserved
5  *
6  * The license below extends only to copyright in the software and shall
7  * not be construed as granting a license to any other intellectual
8  * property including but not limited to intellectual property relating
9  * to a hardware implementation of the functionality of the software
10  * licensed hereunder. You may use the software subject to the license
11  * terms below provided that you ensure that this notice is replicated
12  * unmodified and in its entirety in all distributions of the software,
13  * modified or unmodified, in source code or in binary form.
14  *
15  * Copyright (c) 2006 The Regents of The University of Michigan
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 #ifndef __CPU_CHECKER_CPU_IMPL_HH__
43 #define __CPU_CHECKER_CPU_IMPL_HH__
44 
45 #include <list>
46 #include <string>
47 
48 #include "base/refcnt.hh"
49 #include "config/the_isa.hh"
50 #include "cpu/exetrace.hh"
51 #include "cpu/null_static_inst.hh"
52 #include "cpu/reg_class.hh"
53 #include "cpu/simple_thread.hh"
54 #include "cpu/static_inst.hh"
55 #include "cpu/thread_context.hh"
56 #include "cpu/checker/cpu.hh"
57 #include "debug/Checker.hh"
58 #include "sim/full_system.hh"
59 #include "sim/sim_object.hh"
60 #include "sim/stats.hh"
61 
62 namespace gem5
63 {
64 
65 template <class DynInstPtr>
66 void
68 {
69  if (fault != NoFault) {
70  curMacroStaticInst = nullStaticInstPtr;
71  fault->invoke(tc, curStaticInst);
72  thread->decoder->reset();
73  } else {
74  if (curStaticInst) {
75  if (curStaticInst->isLastMicroop())
76  curMacroStaticInst = nullStaticInstPtr;
77  curStaticInst->advancePC(thread);
78  DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState());
79  }
80  }
81 }
83 
84 template <class DynInstPtr>
85 void
87 {
88  DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n",
89  thread->pcState(), instList.size());
90  DynInstPtr boundaryInst = NULL;
91  if (!instList.empty()) {
92  // Set the instructions as completed and verify as much as possible.
93  DynInstPtr inst;
95 
96  for (itr = instList.begin(); itr != instList.end(); itr++) {
97  (*itr)->setCompleted();
98  }
99 
100  inst = instList.front();
101  boundaryInst = instList.back();
102  verify(inst); // verify the instructions
103  inst = NULL;
104  }
105  if ((!boundaryInst && curMacroStaticInst &&
106  curStaticInst->isDelayedCommit() &&
107  !curStaticInst->isLastMicroop()) ||
108  (boundaryInst && boundaryInst->isDelayedCommit() &&
109  !boundaryInst->isLastMicroop())) {
110  panic("%lli: Trying to take an interrupt in middle of "
111  "a non-interuptable instruction!", curTick());
112  }
113  boundaryInst = NULL;
114  thread->decoder->reset();
115  curMacroStaticInst = nullStaticInstPtr;
116 }
117 
118 template <class DynInstPtr>
119 void
121 {
122  DynInstPtr inst;
123 
124  // Make sure serializing instructions are actually
125  // seen as serializing to commit. instList should be
126  // empty in these cases.
127  if ((completed_inst->isSerializing() ||
128  completed_inst->isSerializeBefore()) &&
129  (!instList.empty() ?
130  (instList.front()->seqNum != completed_inst->seqNum) : 0)) {
131  panic("%lli: Instruction sn:%lli at PC %s is serializing before but is"
132  " entering instList with other instructions\n", curTick(),
133  completed_inst->seqNum, completed_inst->pcState());
134  }
135 
136  // Either check this instruction, or add it to a list of
137  // instructions waiting to be checked. Instructions must be
138  // checked in program order, so if a store has committed yet not
139  // completed, there may be some instructions that are waiting
140  // behind it that have completed and must be checked.
141  if (!instList.empty()) {
142  if (youngestSN < completed_inst->seqNum) {
143  DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
144  completed_inst->seqNum, completed_inst->pcState());
145  instList.push_back(completed_inst);
146  youngestSN = completed_inst->seqNum;
147  }
148 
149  if (!instList.front()->isCompleted()) {
150  return;
151  } else {
152  inst = instList.front();
153  instList.pop_front();
154  }
155  } else {
156  if (!completed_inst->isCompleted()) {
157  if (youngestSN < completed_inst->seqNum) {
158  DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
159  completed_inst->seqNum, completed_inst->pcState());
160  instList.push_back(completed_inst);
161  youngestSN = completed_inst->seqNum;
162  }
163  return;
164  } else {
165  if (youngestSN < completed_inst->seqNum) {
166  inst = completed_inst;
167  youngestSN = completed_inst->seqNum;
168  } else {
169  return;
170  }
171  }
172  }
173 
174  // Make sure a serializing instruction is actually seen as
175  // serializing. instList should be empty here
176  if (inst->isSerializeAfter() && !instList.empty()) {
177  panic("%lli: Instruction sn:%lli at PC %s is serializing after but is"
178  " exiting instList with other instructions\n", curTick(),
179  completed_inst->seqNum, completed_inst->pcState());
180  }
181  unverifiedInst = inst;
182  inst = NULL;
183 
184  auto &decoder = thread->decoder;
185  const Addr pc_mask = decoder->pcMask();
186 
187  // Try to check all instructions that are completed, ending if we
188  // run out of instructions to check or if an instruction is not
189  // yet completed.
190  while (1) {
191  DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n",
192  unverifiedInst->seqNum, unverifiedInst->pcState());
193  unverifiedReq = NULL;
194  unverifiedReq = unverifiedInst->reqToVerify;
195  unverifiedMemData = unverifiedInst->memData;
196  // Make sure results queue is empty
197  while (!result.empty()) {
198  result.pop();
199  }
200  baseStats.numCycles++;
201 
202  Fault fault = NoFault;
203 
204  // Check if any recent PC changes match up with anything we
205  // expect to happen. This is mostly to check if traps or
206  // PC-based events have occurred in both the checker and CPU.
207  if (changedPC) {
208  DPRINTF(Checker, "Changed PC recently to %s\n",
209  thread->pcState());
210  if (willChangePC) {
211  if (*newPCState == thread->pcState()) {
212  DPRINTF(Checker, "Changed PC matches expected PC\n");
213  } else {
214  warn("%lli: Changed PC does not match expected PC, "
215  "changed: %s, expected: %s",
216  curTick(), thread->pcState(), *newPCState);
218  }
219  willChangePC = false;
220  }
221  changedPC = false;
222  }
223 
224  // Try to fetch the instruction
225  uint64_t fetchOffset = 0;
226  bool fetchDone = false;
227  while (!fetchDone) {
228  Addr fetch_PC = thread->pcState().instAddr();
229  fetch_PC = (fetch_PC & pc_mask) + fetchOffset;
230 
231  // If not in the middle of a macro instruction
232  if (!curMacroStaticInst) {
233  // set up memory request for instruction fetch
234  auto mem_req = std::make_shared<Request>(
235  fetch_PC, decoder->moreBytesSize(), 0, requestorId,
236  fetch_PC, thread->contextId());
237 
238  mem_req->setVirt(fetch_PC, decoder->moreBytesSize(),
239  Request::INST_FETCH, requestorId,
240  thread->pcState().instAddr());
241 
242  fault = mmu->translateFunctional(
243  mem_req, tc, BaseMMU::Execute);
244 
245  if (fault != NoFault) {
246  if (unverifiedInst->getFault() == NoFault) {
247  // In this case the instruction was not a dummy
248  // instruction carrying an ITB fault. In the single
249  // threaded case the ITB should still be able to
250  // translate this instruction; in the SMT case it's
251  // possible that its ITB entry was kicked out.
252  warn("%lli: Instruction PC %s was not found in the "
253  "ITB!", curTick(), thread->pcState());
254  handleError(unverifiedInst);
255 
256  // go to the next instruction
257  advancePC(NoFault);
258 
259  // Give up on an ITB fault..
260  unverifiedInst = NULL;
261  return;
262  } else {
263  // The instruction is carrying an ITB fault. Handle
264  // the fault and see if our results match the CPU on
265  // the next tick().
266  fault = unverifiedInst->getFault();
267  break;
268  }
269  } else {
270  PacketPtr pkt = new Packet(mem_req, MemCmd::ReadReq);
271 
272  pkt->dataStatic(decoder->moreBytesPtr());
273  icachePort->sendFunctional(pkt);
274 
275  delete pkt;
276  }
277  }
278 
279  if (fault == NoFault) {
280  std::unique_ptr<PCStateBase> pc_state(
281  thread->pcState().clone());
282 
283  if (isRomMicroPC(pc_state->microPC())) {
284  fetchDone = true;
285  curStaticInst = decoder->fetchRomMicroop(
286  pc_state->microPC(), nullptr);
287  } else if (!curMacroStaticInst) {
288  //We're not in the middle of a macro instruction
289  StaticInstPtr instPtr = nullptr;
290 
291  //Predecode, ie bundle up an ExtMachInst
292  //If more fetch data is needed, pass it in.
293  Addr fetch_pc =
294  (pc_state->instAddr() & pc_mask) + fetchOffset;
295  decoder->moreBytes(*pc_state, fetch_pc);
296 
297  //If an instruction is ready, decode it.
298  //Otherwise, we'll have to fetch beyond the
299  //memory chunk at the current pc.
300  if (decoder->instReady()) {
301  fetchDone = true;
302  instPtr = decoder->decode(*pc_state);
303  thread->pcState(*pc_state);
304  } else {
305  fetchDone = false;
306  fetchOffset += decoder->moreBytesSize();
307  }
308 
309  //If we decoded an instruction and it's microcoded,
310  //start pulling out micro ops
311  if (instPtr && instPtr->isMacroop()) {
312  curMacroStaticInst = instPtr;
313  curStaticInst =
314  instPtr->fetchMicroop(pc_state->microPC());
315  } else {
316  curStaticInst = instPtr;
317  }
318  } else {
319  // Read the next micro op from the macro-op
320  curStaticInst =
321  curMacroStaticInst->fetchMicroop(pc_state->microPC());
322  fetchDone = true;
323  }
324  }
325  }
326  // reset decoder on Checker
327  decoder->reset();
328 
329  // Check Checker and CPU get same instruction, and record
330  // any faults the CPU may have had.
331  Fault unverifiedFault;
332  if (fault == NoFault) {
333  unverifiedFault = unverifiedInst->getFault();
334 
335  // Checks that the instruction matches what we expected it to be.
336  // Checks both the machine instruction and the PC.
337  validateInst(unverifiedInst);
338  }
339 
340  // keep an instruction count
341  numInst++;
342 
343 
344  // Either the instruction was a fault and we should process the fault,
345  // or we should just go ahead execute the instruction. This assumes
346  // that the instruction is properly marked as a fault.
347  if (fault == NoFault) {
348  // Execute Checker instruction and trace
349  if (!unverifiedInst->isUnverifiable()) {
350  Trace::InstRecord *traceData = tracer->getInstRecord(curTick(),
351  tc,
352  curStaticInst,
353  pcState(),
354  curMacroStaticInst);
355  fault = curStaticInst->execute(this, traceData);
356  if (traceData) {
357  traceData->dump();
358  delete traceData;
359  }
360  }
361 
362  if (fault == NoFault && unverifiedFault == NoFault) {
363  // Checks to make sure instrution results are correct.
364  validateExecution(unverifiedInst);
365 
366  if (curStaticInst->isLoad()) {
367  ++numLoad;
368  }
369  } else if (fault != NoFault && unverifiedFault == NoFault) {
370  panic("%lli: sn: %lli at PC: %s took a fault in checker "
371  "but not in driver CPU\n", curTick(),
372  unverifiedInst->seqNum, unverifiedInst->pcState());
373  } else if (fault == NoFault && unverifiedFault != NoFault) {
374  panic("%lli: sn: %lli at PC: %s took a fault in driver "
375  "CPU but not in checker\n", curTick(),
376  unverifiedInst->seqNum, unverifiedInst->pcState());
377  }
378  }
379 
380  // Take any faults here
381  if (fault != NoFault) {
382  if (FullSystem) {
383  fault->invoke(tc, curStaticInst);
384  willChangePC = true;
385  set(newPCState, thread->pcState());
386  DPRINTF(Checker, "Fault, PC is now %s\n", *newPCState);
387  curMacroStaticInst = nullStaticInstPtr;
388  }
389  } else {
390  advancePC(fault);
391  }
392 
393  if (FullSystem) {
394  // @todo: Determine if these should happen only if the
395  // instruction hasn't faulted. In the SimpleCPU case this may
396  // not be true, but in the O3 case this may be true.
397  Addr oldpc;
398  int count = 0;
399  do {
400  oldpc = thread->pcState().instAddr();
401  thread->pcEventQueue.service(oldpc, tc);
402  count++;
403  } while (oldpc != thread->pcState().instAddr());
404  if (count > 1) {
405  willChangePC = true;
406  set(newPCState, thread->pcState());
407  DPRINTF(Checker, "PC Event, PC is now %s\n", *newPCState);
408  }
409  }
410 
411  // @todo: Optionally can check all registers. (Or just those
412  // that have been modified).
413  validateState();
414 
415  // Continue verifying instructions if there's another completed
416  // instruction waiting to be verified.
417  if (instList.empty()) {
418  break;
419  } else if (instList.front()->isCompleted()) {
420  unverifiedInst = NULL;
421  unverifiedInst = instList.front();
422  instList.pop_front();
423  } else {
424  break;
425  }
426  }
427  unverifiedInst = NULL;
428 }
429 
430 template <class DynInstPtr>
431 void
433 {
434  instList.clear();
435 }
436 
437 template <class DynInstPtr>
438 void Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU) {}
439 
440 template <class DynInstPtr>
441 void
443 {
444  if (inst->pcState().instAddr() != thread->pcState().instAddr()) {
445  warn("%lli: PCs do not match! Inst: %s, checker: %s",
446  curTick(), inst->pcState(), thread->pcState());
447  if (changedPC) {
448  warn("%lli: Changed PCs recently, may not be an error",
449  curTick());
450  } else {
451  handleError(inst);
452  }
453  }
454 
455  if (curStaticInst != inst->staticInst) {
456  warn("%lli: StaticInstPtrs don't match. (%s, %s).\n", curTick(),
457  curStaticInst->getName(), inst->staticInst->getName());
458  }
459 }
460 
461 template <class DynInstPtr>
462 void
464 {
465  InstResult checker_val;
466  InstResult inst_val;
467  int idx = -1;
468  bool result_mismatch = false;
469  bool scalar_mismatch = false;
470 
471  if (inst->isUnverifiable()) {
472  // Unverifiable instructions assume they were executed
473  // properly by the CPU. Grab the result from the
474  // instruction and write it to the register.
475  copyResult(inst, InstResult((RegVal)0), idx);
476  } else if (inst->numDestRegs() > 0 && !result.empty()) {
477  DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n",
478  inst->numDestRegs(), result.size());
479  for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) {
480  checker_val = result.front();
481  result.pop();
482  inst_val = inst->popResult(InstResult((RegVal)0));
483  if (checker_val != inst_val) {
484  result_mismatch = true;
485  idx = i;
486  scalar_mismatch = checker_val.is<RegVal>();
487  }
488  }
489  } // Checker CPU checks all the saved results in the dyninst passed by
490  // the cpu model being checked against the saved results present in
491  // the static inst executed in the Checker. Sometimes the number
492  // of saved results differs between the dyninst and static inst, but
493  // this is ok and not a bug. May be worthwhile to try and correct this.
494 
495  if (result_mismatch) {
496  if (scalar_mismatch) {
497  warn("%lli: Instruction results (%i) do not match! (Values may"
498  " not actually be integers) Inst: %#x, checker: %#x",
499  curTick(), idx, inst_val.asNoAssert<RegVal>(),
500  checker_val.as<RegVal>());
501  }
502 
503  // It's useful to verify load values from memory, but in MP
504  // systems the value obtained at execute may be different than
505  // the value obtained at completion. Similarly DMA can
506  // present the same problem on even UP systems. Thus there is
507  // the option to only warn on loads having a result error.
508  // The load/store queue in Detailed CPU can also cause problems
509  // if load/store forwarding is allowed.
510  if (inst->isLoad() && warnOnlyOnLoadError) {
511  copyResult(inst, inst_val, idx);
512  } else {
513  handleError(inst);
514  }
515  }
516 
517  if (inst->pcState() != thread->pcState()) {
518  warn("%lli: Instruction PCs do not match! Inst: %s, checker: %s",
519  curTick(), inst->pcState(), thread->pcState());
520  handleError(inst);
521  }
522 
523  // Checking side effect registers can be difficult if they are not
524  // checked simultaneously with the execution of the instruction.
525  // This is because other valid instructions may have modified
526  // these registers in the meantime, and their values are not
527  // stored within the DynInst.
528  while (!miscRegIdxs.empty()) {
529  int misc_reg_idx = miscRegIdxs.front();
530  miscRegIdxs.pop();
531 
532  if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) !=
533  thread->readMiscRegNoEffect(misc_reg_idx)) {
534  warn("%lli: Misc reg idx %i (side effect) does not match! "
535  "Inst: %#x, checker: %#x",
536  curTick(), misc_reg_idx,
537  inst->tcBase()->readMiscRegNoEffect(misc_reg_idx),
538  thread->readMiscRegNoEffect(misc_reg_idx));
539  handleError(inst);
540  }
541  }
542 }
543 
544 
545 // This function is weird, if it is called it means the Checker and
546 // O3 have diverged, so panic is called for now. It may be useful
547 // to resynch states and continue if the divergence is a false positive
548 template <class DynInstPtr>
549 void
551 {
552  if (updateThisCycle) {
553  // Change this back to warn if divergences end up being false positives
554  panic("%lli: Instruction PC %#x results didn't match up, copying all "
555  "registers from main CPU", curTick(),
556  unverifiedInst->pcState().instAddr());
557 
558  // Terribly convoluted way to make sure O3 model does not implode
559  bool no_squash_from_TC = unverifiedInst->thread->noSquashFromTC;
560  unverifiedInst->thread->noSquashFromTC = true;
561 
562  // Heavy-weight copying of all registers
563  thread->copyArchRegs(unverifiedInst->tcBase());
564  unverifiedInst->thread->noSquashFromTC = no_squash_from_TC;
565 
566  // Set curStaticInst to unverifiedInst->staticInst
567  curStaticInst = unverifiedInst->staticInst;
568  // Also advance the PC. Hopefully no PC-based events happened.
569  advancePC(NoFault);
570  updateThisCycle = false;
571  }
572 }
573 
574 template <class DynInstPtr>
575 void
577  const DynInstPtr &inst, const InstResult& mismatch_val, int start_idx)
578 {
579  // We've already popped one dest off the queue,
580  // so do the fix-up then start with the next dest reg;
581  if (start_idx >= 0) {
582  const RegId& idx = inst->destRegIdx(start_idx);
583  switch (idx.classValue()) {
584  case InvalidRegClass:
585  break;
586  case IntRegClass:
587  case FloatRegClass:
588  case VecElemClass:
589  case CCRegClass:
590  thread->setReg(idx, mismatch_val.as<RegVal>());
591  break;
592  case VecRegClass:
593  {
594  auto val = mismatch_val.as<TheISA::VecRegContainer>();
595  thread->setReg(idx, &val);
596  }
597  break;
598  case MiscRegClass:
599  thread->setMiscReg(idx.index(), mismatch_val.as<RegVal>());
600  break;
601  default:
602  panic("Unknown register class: %d", (int)idx.classValue());
603  }
604  }
605  start_idx++;
606  InstResult res;
607  for (int i = start_idx; i < inst->numDestRegs(); i++) {
608  const RegId& idx = inst->destRegIdx(i);
609  res = inst->popResult();
610  switch (idx.classValue()) {
611  case InvalidRegClass:
612  break;
613  case IntRegClass:
614  case FloatRegClass:
615  case VecElemClass:
616  case CCRegClass:
617  thread->setReg(idx, res.as<RegVal>());
618  break;
619  case VecRegClass:
620  {
621  auto val = res.as<TheISA::VecRegContainer>();
622  thread->setReg(idx, &val);
623  }
624  break;
625  case MiscRegClass:
626  // Try to get the proper misc register index for ARM here...
627  thread->setMiscReg(idx.index(), 0);
628  break;
629  // else Register is out of range...
630  default:
631  panic("Unknown register class: %d", (int)idx.classValue());
632  }
633  }
634 }
635 
636 template <class DynInstPtr>
637 void
639 {
640  cprintf("Error detected, instruction information:\n");
641  cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n"
642  "Completed:%i\n",
643  inst->pcState(),
644  inst->seqNum,
645  inst->threadNumber,
646  inst->isCompleted());
647  inst->dump();
649 }
650 
651 template <class DynInstPtr>
652 void
654 {
655  int num = 0;
656 
657  InstListIt inst_list_it = --(instList.end());
658 
659  cprintf("Inst list size: %i\n", instList.size());
660 
661  while (inst_list_it != instList.end())
662  {
663  cprintf("Instruction:%i\n",
664  num);
665 
666  cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n"
667  "Completed:%i\n",
668  (*inst_list_it)->pcState(),
669  (*inst_list_it)->seqNum,
670  (*inst_list_it)->threadNumber,
671  (*inst_list_it)->isCompleted());
672 
673  cprintf("\n");
674 
675  inst_list_it--;
676  ++num;
677  }
678 
679 }
680 
681 } // namespace gem5
682 
683 #endif//__CPU_CHECKER_CPU_IMPL_HH__
gem5::CheckerCPU::pcState
const PCStateBase & pcState() const override
Definition: cpu.hh:272
gem5::curTick
Tick curTick()
The universal simulation clock.
Definition: cur_tick.hh:46
refcnt.hh
gem5::NoFault
constexpr decltype(nullptr) NoFault
Definition: types.hh:253
gem5::Checker::validateInst
void validateInst(const DynInstPtr &inst)
Definition: cpu_impl.hh:442
warn
#define warn(...)
Definition: logging.hh:246
gem5::Checker::verify
void verify(const DynInstPtr &inst)
Definition: cpu_impl.hh:120
gem5::RegVal
uint64_t RegVal
Definition: types.hh:173
gem5::cprintf
void cprintf(const char *format, const Args &...args)
Definition: cprintf.hh:155
gem5::VecElemClass
@ VecElemClass
Vector Register Native Elem lane.
Definition: reg_class.hh:63
gem5::InvalidRegClass
@ InvalidRegClass
Definition: reg_class.hh:67
gem5::Checker::advancePC
void advancePC(const Fault &fault)
Definition: cpu_impl.hh:67
gem5::isRomMicroPC
static bool isRomMicroPC(MicroPC upc)
Definition: types.hh:166
gem5::CCRegClass
@ CCRegClass
Condition-code register.
Definition: reg_class.hh:65
gem5::ArmISA::set
Bitfield< 12, 11 > set
Definition: misc_types.hh:703
gem5::Request::INST_FETCH
@ INST_FETCH
The request was an instruction fetch.
Definition: request.hh:115
gem5::o3::DynInstPtr
RefCountingPtr< DynInst > DynInstPtr
Definition: dyn_inst_ptr.hh:55
gem5::X86ISA::val
Bitfield< 63 > val
Definition: misc.hh:769
exetrace.hh
gem5::ArmISA::i
Bitfield< 7 > i
Definition: misc_types.hh:67
gem5::Checker::copyResult
void copyResult(const DynInstPtr &inst, const InstResult &mismatch_val, int start_idx)
Definition: cpu_impl.hh:576
gem5::StaticInst::advancePC
virtual void advancePC(PCStateBase &pc_state) const =0
gem5::Checker::handlePendingInt
void handlePendingInt()
Definition: cpu_impl.hh:86
gem5::BaseMMU::Execute
@ Execute
Definition: mmu.hh:56
gem5::RefCountingPtr< StaticInst >
gem5::StaticInst::fetchMicroop
virtual StaticInstPtr fetchMicroop(MicroPC upc) const
Return the microop that goes with a particular micropc.
Definition: static_inst.cc:39
gem5::InstResult::is
bool is() const
Checks.
Definition: inst_res.hh:136
gem5::CheckerCPU::dumpAndExit
void dumpAndExit()
Definition: cpu.cc:373
gem5::Packet::dataStatic
void dataStatic(T *p)
Set the data pointer to the following value that should not be freed.
Definition: packet.hh:1147
stats.hh
gem5::FloatRegClass
@ FloatRegClass
Floating-point register.
Definition: reg_class.hh:59
gem5::InstResult::as
T as() const
Explicit cast-like operations.
Definition: inst_res.hh:158
gem5::nullStaticInstPtr
const StaticInstPtr nullStaticInstPtr
Statically allocated null StaticInstPtr.
Definition: null_static_inst.cc:36
gem5::Fault
std::shared_ptr< FaultBase > Fault
Definition: types.hh:248
sim_object.hh
DPRINTF
#define DPRINTF(x,...)
Definition: trace.hh:186
gem5::X86ISA::count
count
Definition: misc.hh:703
gem5::Packet
A Packet is used to encapsulate a transfer between two objects in the memory system (e....
Definition: packet.hh:291
gem5::probing::Packet
ProbePointArg< PacketInfo > Packet
Packet probe point.
Definition: mem.hh:109
cpu.hh
gem5::MemCmd::ReadReq
@ ReadReq
Definition: packet.hh:86
gem5::ArmISA::VecRegContainer
gem5::VecRegContainer< NumVecElemPerVecReg *sizeof(VecElem)> VecRegContainer
Definition: vec.hh:62
static_inst.hh
gem5::Checker::validateExecution
void validateExecution(const DynInstPtr &inst)
Definition: cpu_impl.hh:463
null_static_inst.hh
gem5::Addr
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:147
full_system.hh
gem5::Trace::InstRecord::dump
virtual void dump()=0
gem5::FullSystem
bool FullSystem
The FullSystem variable can be used to determine the current mode of simulation.
Definition: root.cc:220
gem5::IntRegClass
@ IntRegClass
Integer register.
Definition: reg_class.hh:58
gem5::CheckerCPU::handleError
void handleError()
Definition: cpu.hh:410
simple_thread.hh
gem5::Checker::takeOverFrom
void takeOverFrom(BaseCPU *oldCPU)
Definition: cpu_impl.hh:438
gem5::MiscRegClass
@ MiscRegClass
Control (misc) register.
Definition: reg_class.hh:66
gem5::Checker< gem5::RefCountingPtr >::InstListIt
std::list< gem5::RefCountingPtr >::iterator InstListIt
Definition: cpu.hh:485
gem5::StaticInst::isMacroop
bool isMacroop() const
Definition: static_inst.hh:185
reg_class.hh
gem5::Checker::switchOut
void switchOut()
Definition: cpu_impl.hh:432
gem5::Checker::validateState
void validateState()
Definition: cpu_impl.hh:550
gem5::InstResult::asNoAssert
T asNoAssert() const
Cast to integer without checking type.
Definition: inst_res.hh:178
decoder
output decoder
Definition: nop.cc:61
gem5::Trace::InstRecord
Definition: insttracer.hh:61
gem5::VecRegClass
@ VecRegClass
Vector Register.
Definition: reg_class.hh:61
gem5::RegId::index
constexpr RegIndex index() const
Index accessors.
Definition: reg_class.hh:188
std::list
STL list class.
Definition: stl.hh:51
gem5
Reference material can be found at the JEDEC website: UFS standard http://www.jedec....
Definition: gpu_translation_state.hh:37
gem5::RegId::classValue
constexpr RegClassType classValue() const
Class accessor.
Definition: reg_class.hh:191
gem5::Checker
Templated Checker class.
Definition: cpu.hh:445
thread_context.hh
gem5::Checker::dumpInsts
void dumpInsts()
Definition: cpu_impl.hh:653
gem5::InstResult
Definition: inst_res.hh:50
gem5::RegId
Register ID: describe an architectural register with its class and index.
Definition: reg_class.hh:126
panic
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:178

Generated on Thu Jun 16 2022 10:41:46 for gem5 by doxygen 1.8.17