gem5  [DEVELOP-FOR-23.0]
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
iew.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2013, 2018-2019 ARM Limited
3  * Copyright (c) 2013 Advanced Micro Devices, Inc.
4  * All rights reserved.
5  *
6  * The license below extends only to copyright in the software and shall
7  * not be construed as granting a license to any other intellectual
8  * property including but not limited to intellectual property relating
9  * to a hardware implementation of the functionality of the software
10  * licensed hereunder. You may use the software subject to the license
11  * terms below provided that you ensure that this notice is replicated
12  * unmodified and in its entirety in all distributions of the software,
13  * modified or unmodified, in source code or in binary form.
14  *
15  * Copyright (c) 2004-2006 The Regents of The University of Michigan
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 // @todo: Fix the instantaneous communication among all the stages within
43 // iew. There's a clear delay between issue and execute, yet backwards
44 // communication happens simultaneously.
45 
46 #include "cpu/o3/iew.hh"
47 
48 #include <queue>
49 
50 #include "cpu/checker/cpu.hh"
51 #include "cpu/o3/dyn_inst.hh"
52 #include "cpu/o3/fu_pool.hh"
53 #include "cpu/o3/limits.hh"
54 #include "cpu/timebuf.hh"
55 #include "debug/Activity.hh"
56 #include "debug/Drain.hh"
57 #include "debug/IEW.hh"
58 #include "debug/O3PipeView.hh"
59 #include "params/BaseO3CPU.hh"
60 
61 namespace gem5
62 {
63 
64 namespace o3
65 {
66 
67 IEW::IEW(CPU *_cpu, const BaseO3CPUParams &params)
68  : issueToExecQueue(params.backComSize, params.forwardComSize),
69  cpu(_cpu),
70  instQueue(_cpu, this, params),
71  ldstQueue(_cpu, this, params),
72  fuPool(params.fuPool),
73  commitToIEWDelay(params.commitToIEWDelay),
74  renameToIEWDelay(params.renameToIEWDelay),
75  issueToExecuteDelay(params.issueToExecuteDelay),
76  dispatchWidth(params.dispatchWidth),
77  issueWidth(params.issueWidth),
78  wbNumInst(0),
79  wbCycle(0),
80  wbWidth(params.wbWidth),
81  numThreads(params.numThreads),
82  iewStats(cpu)
83 {
84  if (dispatchWidth > MaxWidth)
85  fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
86  "\tincrease MaxWidth in src/cpu/o3/limits.hh\n",
87  dispatchWidth, static_cast<int>(MaxWidth));
88  if (issueWidth > MaxWidth)
89  fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
90  "\tincrease MaxWidth in src/cpu/o3/limits.hh\n",
91  issueWidth, static_cast<int>(MaxWidth));
92  if (wbWidth > MaxWidth)
93  fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
94  "\tincrease MaxWidth in src/cpu/o3/limits.hh\n",
95  wbWidth, static_cast<int>(MaxWidth));
96 
97  _status = Active;
99  wbStatus = Idle;
100 
101  // Setup wire to read instructions coming from issue.
103 
104  // Instruction queue needs the queue between issue and execute.
106 
107  for (ThreadID tid = 0; tid < MaxThreads; tid++) {
108  dispatchStatus[tid] = Running;
109  fetchRedirect[tid] = false;
110  }
111 
112  updateLSQNextCycle = false;
113 
114  skidBufferMax = (renameToIEWDelay + 1) * params.renameWidth;
115 }
116 
117 std::string
118 IEW::name() const
119 {
120  return cpu->name() + ".iew";
121 }
122 
123 void
125 {
127  cpu->getProbeManager(), "Dispatch");
129  cpu->getProbeManager(), "Mispredict");
135  cpu->getProbeManager(), "Execute");
141  cpu->getProbeManager(), "ToCommit");
142 }
143 
145  : statistics::Group(cpu, "iew"),
146  ADD_STAT(idleCycles, statistics::units::Cycle::get(),
147  "Number of cycles IEW is idle"),
148  ADD_STAT(squashCycles, statistics::units::Cycle::get(),
149  "Number of cycles IEW is squashing"),
150  ADD_STAT(blockCycles, statistics::units::Cycle::get(),
151  "Number of cycles IEW is blocking"),
152  ADD_STAT(unblockCycles, statistics::units::Cycle::get(),
153  "Number of cycles IEW is unblocking"),
154  ADD_STAT(dispatchedInsts, statistics::units::Count::get(),
155  "Number of instructions dispatched to IQ"),
156  ADD_STAT(dispSquashedInsts, statistics::units::Count::get(),
157  "Number of squashed instructions skipped by dispatch"),
158  ADD_STAT(dispLoadInsts, statistics::units::Count::get(),
159  "Number of dispatched load instructions"),
160  ADD_STAT(dispStoreInsts, statistics::units::Count::get(),
161  "Number of dispatched store instructions"),
162  ADD_STAT(dispNonSpecInsts, statistics::units::Count::get(),
163  "Number of dispatched non-speculative instructions"),
164  ADD_STAT(iqFullEvents, statistics::units::Count::get(),
165  "Number of times the IQ has become full, causing a stall"),
166  ADD_STAT(lsqFullEvents, statistics::units::Count::get(),
167  "Number of times the LSQ has become full, causing a stall"),
168  ADD_STAT(memOrderViolationEvents, statistics::units::Count::get(),
169  "Number of memory order violations"),
170  ADD_STAT(predictedTakenIncorrect, statistics::units::Count::get(),
171  "Number of branches that were predicted taken incorrectly"),
172  ADD_STAT(predictedNotTakenIncorrect, statistics::units::Count::get(),
173  "Number of branches that were predicted not taken incorrectly"),
174  ADD_STAT(branchMispredicts, statistics::units::Count::get(),
175  "Number of branch mispredicts detected at execute",
176  predictedTakenIncorrect + predictedNotTakenIncorrect),
177  executedInstStats(cpu),
178  ADD_STAT(instsToCommit, statistics::units::Count::get(),
179  "Cumulative count of insts sent to commit"),
180  ADD_STAT(writebackCount, statistics::units::Count::get(),
181  "Cumulative count of insts written-back"),
182  ADD_STAT(producerInst, statistics::units::Count::get(),
183  "Number of instructions producing a value"),
184  ADD_STAT(consumerInst, statistics::units::Count::get(),
185  "Number of instructions consuming a value"),
186  ADD_STAT(wbRate, statistics::units::Rate<
187  statistics::units::Count, statistics::units::Cycle>::get(),
188  "Insts written-back per cycle"),
189  ADD_STAT(wbFanout, statistics::units::Rate<
190  statistics::units::Count, statistics::units::Count>::get(),
191  "Average fanout of values written-back")
192 {
194  .init(cpu->numThreads)
196 
198  .init(cpu->numThreads)
200 
202  .init(cpu->numThreads)
204 
206  .init(cpu->numThreads)
208 
209  wbRate
212 
213  wbFanout
216 }
217 
219  : statistics::Group(cpu),
220  ADD_STAT(numSquashedInsts, statistics::units::Count::get(),
221  "Number of squashed instructions skipped in execute"),
222  ADD_STAT(numSwp, statistics::units::Count::get(),
223  "Number of swp insts executed")
224 {
225  numSwp
226  .init(cpu->numThreads)
228 }
229 
230 void
232 {
233  for (ThreadID tid = 0; tid < numThreads; tid++) {
234  toRename->iewInfo[tid].usedIQ = true;
235  toRename->iewInfo[tid].freeIQEntries =
237 
238  toRename->iewInfo[tid].usedLSQ = true;
239  toRename->iewInfo[tid].freeLQEntries =
241  toRename->iewInfo[tid].freeSQEntries =
243  }
244 
245  // Initialize the checker's dcache port here
246  if (cpu->checker) {
247  cpu->checker->setDcachePort(&ldstQueue.getDataPort());
248  }
249 
251 }
252 
253 void
255 {
256  toRename->iewInfo[tid].usedIQ = true;
257  toRename->iewInfo[tid].freeIQEntries =
259 
260  toRename->iewInfo[tid].usedLSQ = true;
261  toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
262  toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
263 }
264 
265 void
267 {
268  timeBuffer = tb_ptr;
269 
270  // Setup wire to read information from time buffer, from commit.
272 
273  // Setup wire to write information back to previous stages.
274  toRename = timeBuffer->getWire(0);
275 
276  toFetch = timeBuffer->getWire(0);
277 
278  // Instruction queue also needs main time buffer.
279  instQueue.setTimeBuffer(tb_ptr);
280 }
281 
282 void
284 {
285  renameQueue = rq_ptr;
286 
287  // Setup wire to read information from rename queue.
289 }
290 
291 void
293 {
294  iewQueue = iq_ptr;
295 
296  // Setup wire to write instructions to commit.
297  toCommit = iewQueue->getWire(0);
298 }
299 
300 void
302 {
303  activeThreads = at_ptr;
304 
305  ldstQueue.setActiveThreads(at_ptr);
306  instQueue.setActiveThreads(at_ptr);
307 }
308 
309 void
311 {
312  scoreboard = sb_ptr;
313 }
314 
315 bool
317 {
318  bool drained = ldstQueue.isDrained() && instQueue.isDrained();
319 
320  for (ThreadID tid = 0; tid < numThreads; tid++) {
321  if (!insts[tid].empty()) {
322  DPRINTF(Drain, "%i: Insts not empty.\n", tid);
323  drained = false;
324  }
325  if (!skidBuffer[tid].empty()) {
326  DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
327  drained = false;
328  }
329  drained = drained && dispatchStatus[tid] == Running;
330  }
331 
332  // Also check the FU pool as instructions are "stored" in FU
333  // completion events until they are done and not accounted for
334  // above
335  if (drained && !fuPool->isDrained()) {
336  DPRINTF(Drain, "FU pool still busy.\n");
337  drained = false;
338  }
339 
340  return drained;
341 }
342 
343 void
345 {
346  assert(isDrained());
347 
350 }
351 
352 void
354 {
355  // Reset all state.
356  _status = Active;
357  exeStatus = Running;
358  wbStatus = Idle;
359 
362  fuPool->takeOverFrom();
363 
364  startupStage();
366 
367  for (ThreadID tid = 0; tid < numThreads; tid++) {
368  dispatchStatus[tid] = Running;
369  fetchRedirect[tid] = false;
370  }
371 
372  updateLSQNextCycle = false;
373 
374  for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
375  issueToExecQueue.advance();
376  }
377 }
378 
379 void
381 {
382  DPRINTF(IEW, "[tid:%i] Squashing all instructions.\n", tid);
383 
384  // Tell the IQ to start squashing.
385  instQueue.squash(tid);
386 
387  // Tell the LDSTQ to start squashing.
388  ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
389  updatedQueues = true;
390 
391  // Clear the skid buffer in case it has any data in it.
392  DPRINTF(IEW,
393  "Removing skidbuffer instructions until "
394  "[sn:%llu] [tid:%i]\n",
395  fromCommit->commitInfo[tid].doneSeqNum, tid);
396 
397  while (!skidBuffer[tid].empty()) {
398  if (skidBuffer[tid].front()->isLoad()) {
399  toRename->iewInfo[tid].dispatchedToLQ++;
400  }
401  if (skidBuffer[tid].front()->isStore() ||
402  skidBuffer[tid].front()->isAtomic()) {
403  toRename->iewInfo[tid].dispatchedToSQ++;
404  }
405 
406  toRename->iewInfo[tid].dispatched++;
407 
408  skidBuffer[tid].pop();
409  }
410 
411  emptyRenameInsts(tid);
412 }
413 
414 void
416 {
417  DPRINTF(IEW, "[tid:%i] [sn:%llu] Squashing from a specific instruction,"
418  " PC: %s "
419  "\n", tid, inst->seqNum, inst->pcState() );
420 
421  if (!toCommit->squash[tid] ||
422  inst->seqNum < toCommit->squashedSeqNum[tid]) {
423  toCommit->squash[tid] = true;
424  toCommit->squashedSeqNum[tid] = inst->seqNum;
425  toCommit->branchTaken[tid] = inst->pcState().branching();
426 
427  set(toCommit->pc[tid], inst->pcState());
428  inst->staticInst->advancePC(*toCommit->pc[tid]);
429 
430  toCommit->mispredictInst[tid] = inst;
431  toCommit->includeSquashInst[tid] = false;
432 
433  wroteToTimeBuffer = true;
434  }
435 
436 }
437 
438 void
440 {
441  DPRINTF(IEW, "[tid:%i] Memory violation, squashing violator and younger "
442  "insts, PC: %s [sn:%llu].\n", tid, inst->pcState(), inst->seqNum);
443  // Need to include inst->seqNum in the following comparison to cover the
444  // corner case when a branch misprediction and a memory violation for the
445  // same instruction (e.g. load PC) are detected in the same cycle. In this
446  // case the memory violator should take precedence over the branch
447  // misprediction because it requires the violator itself to be included in
448  // the squash.
449  if (!toCommit->squash[tid] ||
450  inst->seqNum <= toCommit->squashedSeqNum[tid]) {
451  toCommit->squash[tid] = true;
452 
453  toCommit->squashedSeqNum[tid] = inst->seqNum;
454  set(toCommit->pc[tid], inst->pcState());
455  toCommit->mispredictInst[tid] = NULL;
456 
457  // Must include the memory violator in the squash.
458  toCommit->includeSquashInst[tid] = true;
459 
460  wroteToTimeBuffer = true;
461  }
462 }
463 
464 void
466 {
467  DPRINTF(IEW, "[tid:%i] Blocking.\n", tid);
468 
469  if (dispatchStatus[tid] != Blocked &&
470  dispatchStatus[tid] != Unblocking) {
471  toRename->iewBlock[tid] = true;
472  wroteToTimeBuffer = true;
473  }
474 
475  // Add the current inputs to the skid buffer so they can be
476  // reprocessed when this stage unblocks.
477  skidInsert(tid);
478 
479  dispatchStatus[tid] = Blocked;
480 }
481 
482 void
484 {
485  DPRINTF(IEW, "[tid:%i] Reading instructions out of the skid "
486  "buffer %u.\n",tid, tid);
487 
488  // If the skid bufffer is empty, signal back to previous stages to unblock.
489  // Also switch status to running.
490  if (skidBuffer[tid].empty()) {
491  toRename->iewUnblock[tid] = true;
492  wroteToTimeBuffer = true;
493  DPRINTF(IEW, "[tid:%i] Done unblocking.\n",tid);
494  dispatchStatus[tid] = Running;
495  }
496 }
497 
498 void
500 {
502 }
503 
504 void
506 {
508 }
509 
510 void
512 {
513  instQueue.replayMemInst(inst);
514 }
515 
516 void
518 {
519  instQueue.blockMemInst(inst);
520 }
521 
522 void
524 {
526 }
527 
528 void
530 {
531  // This function should not be called after writebackInsts in a
532  // single cycle. That will cause problems with an instruction
533  // being added to the queue to commit without being processed by
534  // writebackInsts prior to being sent to commit.
535 
536  // First check the time slot that this instruction will write
537  // to. If there are free write ports at the time, then go ahead
538  // and write the instruction to that time. If there are not,
539  // keep looking back to see where's the first time there's a
540  // free slot.
541  while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
542  ++wbNumInst;
543  if (wbNumInst == wbWidth) {
544  ++wbCycle;
545  wbNumInst = 0;
546  }
547  }
548 
549  DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
551  // Add finished instruction to queue to commit.
552  (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
553  (*iewQueue)[wbCycle].size++;
554 }
555 
556 void
558 {
559  DynInstPtr inst = NULL;
560 
561  while (!insts[tid].empty()) {
562  inst = insts[tid].front();
563 
564  insts[tid].pop();
565 
566  DPRINTF(IEW,"[tid:%i] Inserting [sn:%lli] PC:%s into "
567  "dispatch skidBuffer %i\n",tid, inst->seqNum,
568  inst->pcState(),tid);
569 
570  skidBuffer[tid].push(inst);
571  }
572 
573  assert(skidBuffer[tid].size() <= skidBufferMax &&
574  "Skidbuffer Exceeded Max Size");
575 }
576 
577 int
579 {
580  int max=0;
581 
582  std::list<ThreadID>::iterator threads = activeThreads->begin();
584 
585  while (threads != end) {
586  ThreadID tid = *threads++;
587  unsigned thread_count = skidBuffer[tid].size();
588  if (max < thread_count)
589  max = thread_count;
590  }
591 
592  return max;
593 }
594 
595 bool
597 {
598  std::list<ThreadID>::iterator threads = activeThreads->begin();
600 
601  while (threads != end) {
602  ThreadID tid = *threads++;
603 
604  if (!skidBuffer[tid].empty())
605  return false;
606  }
607 
608  return true;
609 }
610 
611 void
613 {
614  bool any_unblocking = false;
615 
616  std::list<ThreadID>::iterator threads = activeThreads->begin();
618 
619  while (threads != end) {
620  ThreadID tid = *threads++;
621 
622  if (dispatchStatus[tid] == Unblocking) {
623  any_unblocking = true;
624  break;
625  }
626  }
627 
628  // If there are no ready instructions waiting to be scheduled by the IQ,
629  // and there's no stores waiting to write back, and dispatch is not
630  // unblocking, then there is no internal activity for the IEW stage.
632  if (_status == Active && !instQueue.hasReadyInsts() &&
633  !ldstQueue.willWB() && !any_unblocking) {
634  DPRINTF(IEW, "IEW switching to idle\n");
635 
636  deactivateStage();
637 
638  _status = Inactive;
639  } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
640  ldstQueue.willWB() ||
641  any_unblocking)) {
642  // Otherwise there is internal activity. Set to active.
643  DPRINTF(IEW, "IEW switching to active\n");
644 
645  activateStage();
646 
647  _status = Active;
648  }
649 }
650 
651 bool
653 {
654  bool ret_val(false);
655 
656  if (fromCommit->commitInfo[tid].robSquashing) {
657  DPRINTF(IEW,"[tid:%i] Stall from Commit stage detected.\n",tid);
658  ret_val = true;
659  } else if (instQueue.isFull(tid)) {
660  DPRINTF(IEW,"[tid:%i] Stall: IQ is full.\n",tid);
661  ret_val = true;
662  }
663 
664  return ret_val;
665 }
666 
667 void
669 {
670  // Check if there's a squash signal, squash if there is
671  // Check stall signals, block if there is.
672  // If status was Blocked
673  // if so then go to unblocking
674  // If status was Squashing
675  // check if squashing is not high. Switch to running this cycle.
676 
677  if (fromCommit->commitInfo[tid].squash) {
678  squash(tid);
679 
680  if (dispatchStatus[tid] == Blocked ||
681  dispatchStatus[tid] == Unblocking) {
682  toRename->iewUnblock[tid] = true;
683  wroteToTimeBuffer = true;
684  }
685 
686  dispatchStatus[tid] = Squashing;
687  fetchRedirect[tid] = false;
688  return;
689  }
690 
691  if (fromCommit->commitInfo[tid].robSquashing) {
692  DPRINTF(IEW, "[tid:%i] ROB is still squashing.\n", tid);
693 
694  dispatchStatus[tid] = Squashing;
695  emptyRenameInsts(tid);
696  wroteToTimeBuffer = true;
697  }
698 
699  if (checkStall(tid)) {
700  block(tid);
701  dispatchStatus[tid] = Blocked;
702  return;
703  }
704 
705  if (dispatchStatus[tid] == Blocked) {
706  // Status from previous cycle was blocked, but there are no more stall
707  // conditions. Switch over to unblocking.
708  DPRINTF(IEW, "[tid:%i] Done blocking, switching to unblocking.\n",
709  tid);
710 
711  dispatchStatus[tid] = Unblocking;
712 
713  unblock(tid);
714 
715  return;
716  }
717 
718  if (dispatchStatus[tid] == Squashing) {
719  // Switch status to running if rename isn't being told to block or
720  // squash this cycle.
721  DPRINTF(IEW, "[tid:%i] Done squashing, switching to running.\n",
722  tid);
723 
724  dispatchStatus[tid] = Running;
725 
726  return;
727  }
728 }
729 
730 void
732 {
733  int insts_from_rename = fromRename->size;
734 #ifdef GEM5_DEBUG
735  for (ThreadID tid = 0; tid < numThreads; tid++)
736  assert(insts[tid].empty());
737 #endif
738  for (int i = 0; i < insts_from_rename; ++i) {
739  insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
740  }
741 }
742 
743 void
745 {
746  DPRINTF(IEW, "[tid:%i] Removing incoming rename instructions\n", tid);
747 
748  while (!insts[tid].empty()) {
749 
750  if (insts[tid].front()->isLoad()) {
751  toRename->iewInfo[tid].dispatchedToLQ++;
752  }
753  if (insts[tid].front()->isStore() ||
754  insts[tid].front()->isAtomic()) {
755  toRename->iewInfo[tid].dispatchedToSQ++;
756  }
757 
758  toRename->iewInfo[tid].dispatched++;
759 
760  insts[tid].pop();
761  }
762 }
763 
764 void
766 {
767  cpu->wakeCPU();
768 }
769 
770 void
772 {
773  DPRINTF(Activity, "Activity this cycle.\n");
775 }
776 
777 void
779 {
780  DPRINTF(Activity, "Activating stage.\n");
782 }
783 
784 void
786 {
787  DPRINTF(Activity, "Deactivating stage.\n");
789 }
790 
791 void
793 {
794  // If status is Running or idle,
795  // call dispatchInsts()
796  // If status is Unblocking,
797  // buffer any instructions coming from rename
798  // continue trying to empty skid buffer
799  // check if stall conditions have passed
800 
801  if (dispatchStatus[tid] == Blocked) {
803 
804  } else if (dispatchStatus[tid] == Squashing) {
806  }
807 
808  // Dispatch should try to dispatch as many instructions as its bandwidth
809  // will allow, as long as it is not currently blocked.
810  if (dispatchStatus[tid] == Running ||
811  dispatchStatus[tid] == Idle) {
812  DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
813  "dispatch.\n", tid);
814 
815  dispatchInsts(tid);
816  } else if (dispatchStatus[tid] == Unblocking) {
817  // Make sure that the skid buffer has something in it if the
818  // status is unblocking.
819  assert(!skidsEmpty());
820 
821  // If the status was unblocking, then instructions from the skid
822  // buffer were used. Remove those instructions and handle
823  // the rest of unblocking.
824  dispatchInsts(tid);
825 
827 
828  if (fromRename->size != 0) {
829  // Add the current inputs to the skid buffer so they can be
830  // reprocessed when this stage unblocks.
831  skidInsert(tid);
832  }
833 
834  unblock(tid);
835  }
836 }
837 
838 void
840 {
841  // Obtain instructions from skid buffer if unblocking, or queue from rename
842  // otherwise.
843  std::queue<DynInstPtr> &insts_to_dispatch =
844  dispatchStatus[tid] == Unblocking ?
845  skidBuffer[tid] : insts[tid];
846 
847  int insts_to_add = insts_to_dispatch.size();
848 
849  DynInstPtr inst;
850  bool add_to_iq = false;
851  int dis_num_inst = 0;
852 
853  // Loop through the instructions, putting them in the instruction
854  // queue.
855  for ( ; dis_num_inst < insts_to_add &&
856  dis_num_inst < dispatchWidth;
857  ++dis_num_inst)
858  {
859  inst = insts_to_dispatch.front();
860 
861  if (dispatchStatus[tid] == Unblocking) {
862  DPRINTF(IEW, "[tid:%i] Issue: Examining instruction from skid "
863  "buffer\n", tid);
864  }
865 
866  // Make sure there's a valid instruction there.
867  assert(inst);
868 
869  DPRINTF(IEW, "[tid:%i] Issue: Adding PC %s [sn:%lli] [tid:%i] to "
870  "IQ.\n",
871  tid, inst->pcState(), inst->seqNum, inst->threadNumber);
872 
873  // Be sure to mark these instructions as ready so that the
874  // commit stage can go ahead and execute them, and mark
875  // them as issued so the IQ doesn't reprocess them.
876 
877  // Check for squashed instructions.
878  if (inst->isSquashed()) {
879  DPRINTF(IEW, "[tid:%i] Issue: Squashed instruction encountered, "
880  "not adding to IQ.\n", tid);
881 
883 
884  insts_to_dispatch.pop();
885 
886  //Tell Rename That An Instruction has been processed
887  if (inst->isLoad()) {
888  toRename->iewInfo[tid].dispatchedToLQ++;
889  }
890  if (inst->isStore() || inst->isAtomic()) {
891  toRename->iewInfo[tid].dispatchedToSQ++;
892  }
893 
894  toRename->iewInfo[tid].dispatched++;
895 
896  continue;
897  }
898 
899  // Check for full conditions.
900  if (instQueue.isFull(tid)) {
901  DPRINTF(IEW, "[tid:%i] Issue: IQ has become full.\n", tid);
902 
903  // Call function to start blocking.
904  block(tid);
905 
906  // Set unblock to false. Special case where we are using
907  // skidbuffer (unblocking) instructions but then we still
908  // get full in the IQ.
909  toRename->iewUnblock[tid] = false;
910 
912  break;
913  }
914 
915  // Check LSQ if inst is LD/ST
916  if ((inst->isAtomic() && ldstQueue.sqFull(tid)) ||
917  (inst->isLoad() && ldstQueue.lqFull(tid)) ||
918  (inst->isStore() && ldstQueue.sqFull(tid))) {
919  DPRINTF(IEW, "[tid:%i] Issue: %s has become full.\n",tid,
920  inst->isLoad() ? "LQ" : "SQ");
921 
922  // Call function to start blocking.
923  block(tid);
924 
925  // Set unblock to false. Special case where we are using
926  // skidbuffer (unblocking) instructions but then we still
927  // get full in the IQ.
928  toRename->iewUnblock[tid] = false;
929 
931  break;
932  }
933 
934  // hardware transactional memory
935  // CPU needs to track transactional state in program order.
936  const int numHtmStarts = ldstQueue.numHtmStarts(tid);
937  const int numHtmStops = ldstQueue.numHtmStops(tid);
938  const int htmDepth = numHtmStarts - numHtmStops;
939 
940  if (htmDepth > 0) {
941  inst->setHtmTransactionalState(ldstQueue.getLatestHtmUid(tid),
942  htmDepth);
943  } else {
944  inst->clearHtmTransactionalState();
945  }
946 
947 
948  // Otherwise issue the instruction just fine.
949  if (inst->isAtomic()) {
950  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
951  "encountered, adding to LSQ.\n", tid);
952 
953  ldstQueue.insertStore(inst);
954 
956 
957  // AMOs need to be set as "canCommit()"
958  // so that commit can process them when they reach the
959  // head of commit.
960  inst->setCanCommit();
961  instQueue.insertNonSpec(inst);
962  add_to_iq = false;
963 
965 
966  toRename->iewInfo[tid].dispatchedToSQ++;
967  } else if (inst->isLoad()) {
968  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
969  "encountered, adding to LSQ.\n", tid);
970 
971  // Reserve a spot in the load store queue for this
972  // memory access.
973  ldstQueue.insertLoad(inst);
974 
976 
977  add_to_iq = true;
978 
979  toRename->iewInfo[tid].dispatchedToLQ++;
980  } else if (inst->isStore()) {
981  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
982  "encountered, adding to LSQ.\n", tid);
983 
984  ldstQueue.insertStore(inst);
985 
987 
988  if (inst->isStoreConditional()) {
989  // Store conditionals need to be set as "canCommit()"
990  // so that commit can process them when they reach the
991  // head of commit.
992  // @todo: This is somewhat specific to Alpha.
993  inst->setCanCommit();
994  instQueue.insertNonSpec(inst);
995  add_to_iq = false;
996 
998  } else {
999  add_to_iq = true;
1000  }
1001 
1002  toRename->iewInfo[tid].dispatchedToSQ++;
1003  } else if (inst->isReadBarrier() || inst->isWriteBarrier()) {
1004  // Same as non-speculative stores.
1005  inst->setCanCommit();
1006  instQueue.insertBarrier(inst);
1007  add_to_iq = false;
1008  } else if (inst->isNop()) {
1009  DPRINTF(IEW, "[tid:%i] Issue: Nop instruction encountered, "
1010  "skipping.\n", tid);
1011 
1012  inst->setIssued();
1013  inst->setExecuted();
1014  inst->setCanCommit();
1015 
1016  instQueue.recordProducer(inst);
1017 
1018  cpu->executeStats[tid]->numNop++;
1019 
1020  add_to_iq = false;
1021  } else {
1022  assert(!inst->isExecuted());
1023  add_to_iq = true;
1024  }
1025 
1026  if (add_to_iq && inst->isNonSpeculative()) {
1027  DPRINTF(IEW, "[tid:%i] Issue: Nonspeculative instruction "
1028  "encountered, skipping.\n", tid);
1029 
1030  // Same as non-speculative stores.
1031  inst->setCanCommit();
1032 
1033  // Specifically insert it as nonspeculative.
1034  instQueue.insertNonSpec(inst);
1035 
1037 
1038  add_to_iq = false;
1039  }
1040 
1041  // If the instruction queue is not full, then add the
1042  // instruction.
1043  if (add_to_iq) {
1044  instQueue.insert(inst);
1045  }
1046 
1047  insts_to_dispatch.pop();
1048 
1049  toRename->iewInfo[tid].dispatched++;
1050 
1052 
1053 #if TRACING_ON
1054  inst->dispatchTick = curTick() - inst->fetchTick;
1055 #endif
1056  ppDispatch->notify(inst);
1057  }
1058 
1059  if (!insts_to_dispatch.empty()) {
1060  DPRINTF(IEW,"[tid:%i] Issue: Bandwidth Full. Blocking.\n", tid);
1061  block(tid);
1062  toRename->iewUnblock[tid] = false;
1063  }
1064 
1065  if (dispatchStatus[tid] == Idle && dis_num_inst) {
1066  dispatchStatus[tid] = Running;
1067 
1068  updatedQueues = true;
1069  }
1070 
1071  dis_num_inst = 0;
1072 }
1073 
1074 void
1076 {
1077  int inst = 0;
1078 
1079  std::cout << "Available Instructions: ";
1080 
1081  while (fromIssue->insts[inst]) {
1082 
1083  if (inst%3==0) std::cout << "\n\t";
1084 
1085  std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1086  << " TN: " << fromIssue->insts[inst]->threadNumber
1087  << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1088 
1089  inst++;
1090 
1091  }
1092 
1093  std::cout << "\n";
1094 }
1095 
1096 void
1098 {
1099  wbNumInst = 0;
1100  wbCycle = 0;
1101 
1102  std::list<ThreadID>::iterator threads = activeThreads->begin();
1104 
1105  while (threads != end) {
1106  ThreadID tid = *threads++;
1107  fetchRedirect[tid] = false;
1108  }
1109 
1110  // Uncomment this if you want to see all available instructions.
1111  // @todo This doesn't actually work anymore, we should fix it.
1112 // printAvailableInsts();
1113 
1114  // Execute/writeback any instructions that are available.
1115  int insts_to_execute = fromIssue->size;
1116  int inst_num = 0;
1117  for (; inst_num < insts_to_execute;
1118  ++inst_num) {
1119 
1120  DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1121 
1123 
1124  DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%llu].\n",
1125  inst->pcState(), inst->threadNumber,inst->seqNum);
1126 
1127  // Notify potential listeners that this instruction has started
1128  // executing
1129  ppExecute->notify(inst);
1130 
1131  // Check if the instruction is squashed; if so then skip it
1132  if (inst->isSquashed()) {
1133  DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1134  " [sn:%llu]\n", inst->pcState(), inst->threadNumber,
1135  inst->seqNum);
1136 
1137  // Consider this instruction executed so that commit can go
1138  // ahead and retire the instruction.
1139  inst->setExecuted();
1140 
1141  // Not sure if I should set this here or just let commit try to
1142  // commit any squashed instructions. I like the latter a bit more.
1143  inst->setCanCommit();
1144 
1146 
1147  continue;
1148  }
1149 
1150  Fault fault = NoFault;
1151 
1152  // Execute instruction.
1153  // Note that if the instruction faults, it will be handled
1154  // at the commit stage.
1155  if (inst->isMemRef()) {
1156  DPRINTF(IEW, "Execute: Calculating address for memory "
1157  "reference.\n");
1158 
1159  // Tell the LDSTQ to execute this instruction (if it is a load).
1160  if (inst->isAtomic()) {
1161  // AMOs are treated like store requests
1162  fault = ldstQueue.executeStore(inst);
1163 
1164  if (inst->isTranslationDelayed() &&
1165  fault == NoFault) {
1166  // A hw page table walk is currently going on; the
1167  // instruction must be deferred.
1168  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1169  "store.\n");
1170  instQueue.deferMemInst(inst);
1171  continue;
1172  }
1173  } else if (inst->isLoad()) {
1174  // Loads will mark themselves as executed, and their writeback
1175  // event adds the instruction to the queue to commit
1176  fault = ldstQueue.executeLoad(inst);
1177 
1178  if (inst->isTranslationDelayed() &&
1179  fault == NoFault) {
1180  // A hw page table walk is currently going on; the
1181  // instruction must be deferred.
1182  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1183  "load.\n");
1184  instQueue.deferMemInst(inst);
1185  continue;
1186  }
1187 
1188  if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1189  inst->fault = NoFault;
1190  }
1191  } else if (inst->isStore()) {
1192  fault = ldstQueue.executeStore(inst);
1193 
1194  if (inst->isTranslationDelayed() &&
1195  fault == NoFault) {
1196  // A hw page table walk is currently going on; the
1197  // instruction must be deferred.
1198  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1199  "store.\n");
1200  instQueue.deferMemInst(inst);
1201  continue;
1202  }
1203 
1204  // If the store had a fault then it may not have a mem req
1205  if (fault != NoFault || !inst->readPredicate() ||
1206  !inst->isStoreConditional()) {
1207  // If the instruction faulted, then we need to send it
1208  // along to commit without the instruction completing.
1209  // Send this instruction to commit, also make sure iew
1210  // stage realizes there is activity.
1211  inst->setExecuted();
1212  instToCommit(inst);
1214  }
1215 
1216  // Store conditionals will mark themselves as
1217  // executed, and their writeback event will add the
1218  // instruction to the queue to commit.
1219  } else {
1220  panic("Unexpected memory type!\n");
1221  }
1222 
1223  } else {
1224  // If the instruction has already faulted, then skip executing it.
1225  // Such case can happen when it faulted during ITLB translation.
1226  // If we execute the instruction (even if it's a nop) the fault
1227  // will be replaced and we will lose it.
1228  if (inst->getFault() == NoFault) {
1229  inst->execute();
1230  if (!inst->readPredicate())
1231  inst->forwardOldRegs();
1232  }
1233 
1234  inst->setExecuted();
1235 
1236  instToCommit(inst);
1237  }
1238 
1239  updateExeInstStats(inst);
1240 
1241  // Check if branch prediction was correct, if not then we need
1242  // to tell commit to squash in flight instructions. Only
1243  // handle this if there hasn't already been something that
1244  // redirects fetch in this group of instructions.
1245 
1246  // This probably needs to prioritize the redirects if a different
1247  // scheduler is used. Currently the scheduler schedules the oldest
1248  // instruction first, so the branch resolution order will be correct.
1249  ThreadID tid = inst->threadNumber;
1250 
1251  if (!fetchRedirect[tid] ||
1252  !toCommit->squash[tid] ||
1253  toCommit->squashedSeqNum[tid] > inst->seqNum) {
1254 
1255  // Prevent testing for misprediction on load instructions,
1256  // that have not been executed.
1257  bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1258 
1259  if (inst->mispredicted() && !loadNotExecuted) {
1260  fetchRedirect[tid] = true;
1261 
1262  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1263  "Branch mispredict detected.\n",
1264  tid, inst->seqNum);
1265  DPRINTF(IEW, "[tid:%i] [sn:%llu] "
1266  "Predicted target was PC: %s\n",
1267  tid, inst->seqNum, inst->readPredTarg());
1268  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1269  "Redirecting fetch to PC: %s\n",
1270  tid, inst->seqNum, inst->pcState());
1271  // If incorrect, then signal the ROB that it must be squashed.
1272  squashDueToBranch(inst, tid);
1273 
1274  ppMispredict->notify(inst);
1275 
1276  if (inst->readPredTaken()) {
1278  } else {
1280  }
1281  } else if (ldstQueue.violation(tid)) {
1282  assert(inst->isMemRef());
1283  // If there was an ordering violation, then get the
1284  // DynInst that caused the violation. Note that this
1285  // clears the violation signal.
1286  DynInstPtr violator;
1287  violator = ldstQueue.getMemDepViolator(tid);
1288 
1289  DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1290  "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1291  violator->pcState(), violator->seqNum,
1292  inst->pcState(), inst->seqNum, inst->physEffAddr);
1293 
1294  fetchRedirect[tid] = true;
1295 
1296  // Tell the instruction queue that a violation has occured.
1297  instQueue.violation(inst, violator);
1298 
1299  // Squash.
1300  squashDueToMemOrder(violator, tid);
1301 
1303  }
1304  } else {
1305  // Reset any state associated with redirects that will not
1306  // be used.
1307  if (ldstQueue.violation(tid)) {
1308  assert(inst->isMemRef());
1309 
1310  DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1311 
1312  DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1313  "%s, inst PC: %s. Addr is: %#x.\n",
1314  violator->pcState(), inst->pcState(),
1315  inst->physEffAddr);
1316  DPRINTF(IEW, "Violation will not be handled because "
1317  "already squashing\n");
1318 
1320  }
1321  }
1322  }
1323 
1324  // Update and record activity if we processed any instructions.
1325  if (inst_num) {
1326  if (exeStatus == Idle) {
1327  exeStatus = Running;
1328  }
1329 
1330  updatedQueues = true;
1331 
1333  }
1334 
1335  // Need to reset this in case a writeback event needs to write into the
1336  // iew queue. That way the writeback event will write into the correct
1337  // spot in the queue.
1338  wbNumInst = 0;
1339 
1340 }
1341 
1342 void
1344 {
1345  // Loop through the head of the time buffer and wake any
1346  // dependents. These instructions are about to write back. Also
1347  // mark scoreboard that this instruction is finally complete.
1348  // Either have IEW have direct access to scoreboard, or have this
1349  // as part of backwards communication.
1350  for (int inst_num = 0; inst_num < wbWidth &&
1351  toCommit->insts[inst_num]; inst_num++) {
1352  DynInstPtr inst = toCommit->insts[inst_num];
1353  ThreadID tid = inst->threadNumber;
1354 
1355  DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1356  inst->seqNum, inst->pcState());
1357 
1358  iewStats.instsToCommit[tid]++;
1359  // Notify potential listeners that execution is complete for this
1360  // instruction.
1361  ppToCommit->notify(inst);
1362 
1363  // Some instructions will be sent to commit without having
1364  // executed because they need commit to handle them.
1365  // E.g. Strictly ordered loads have not actually executed when they
1366  // are first sent to commit. Instead commit must tell the LSQ
1367  // when it's ready to execute the strictly ordered load.
1368  if (!inst->isSquashed() && inst->isExecuted() &&
1369  inst->getFault() == NoFault) {
1370  int dependents = instQueue.wakeDependents(inst);
1371 
1372  for (int i = 0; i < inst->numDestRegs(); i++) {
1373  // Mark register as ready if not pinned
1374  if (inst->renamedDestIdx(i)->
1375  getNumPinnedWritesToComplete() == 0) {
1376  DPRINTF(IEW,"Setting Destination Register %i (%s)\n",
1377  inst->renamedDestIdx(i)->index(),
1378  inst->renamedDestIdx(i)->className());
1379  scoreboard->setReg(inst->renamedDestIdx(i));
1380  }
1381  }
1382 
1383  if (dependents) {
1384  iewStats.producerInst[tid]++;
1385  iewStats.consumerInst[tid]+= dependents;
1386  }
1387  iewStats.writebackCount[tid]++;
1388  }
1389  }
1390 }
1391 
1392 void
1394 {
1395  wbNumInst = 0;
1396  wbCycle = 0;
1397 
1398  wroteToTimeBuffer = false;
1399  updatedQueues = false;
1400 
1401  ldstQueue.tick();
1402 
1403  sortInsts();
1404 
1405  // Free function units marked as being freed this cycle.
1407 
1408  std::list<ThreadID>::iterator threads = activeThreads->begin();
1410 
1411  // Check stall and squash signals, dispatch any instructions.
1412  while (threads != end) {
1413  ThreadID tid = *threads++;
1414 
1415  DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1416 
1417  checkSignalsAndUpdate(tid);
1418  dispatch(tid);
1419  }
1420 
1421  if (exeStatus != Squashing) {
1422  executeInsts();
1423 
1424  writebackInsts();
1425 
1426  // Have the instruction queue try to schedule any ready instructions.
1427  // (In actuality, this scheduling is for instructions that will
1428  // be executed next cycle.)
1430 
1431  // Also should advance its own time buffers if the stage ran.
1432  // Not the best place for it, but this works (hopefully).
1433  issueToExecQueue.advance();
1434  }
1435 
1436  bool broadcast_free_entries = false;
1437 
1439  exeStatus = Idle;
1440  updateLSQNextCycle = false;
1441 
1442  broadcast_free_entries = true;
1443  }
1444 
1445  // Writeback any stores using any leftover bandwidth.
1447 
1448  // Check the committed load/store signals to see if there's a load
1449  // or store to commit. Also check if it's being told to execute a
1450  // nonspeculative instruction.
1451  // This is pretty inefficient...
1452 
1453  threads = activeThreads->begin();
1454  while (threads != end) {
1455  ThreadID tid = (*threads++);
1456 
1457  DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1458 
1459  // Update structures based on instructions committed.
1460  if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1461  !fromCommit->commitInfo[tid].squash &&
1462  !fromCommit->commitInfo[tid].robSquashing) {
1463 
1464  ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1465 
1466  ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1467 
1468  updateLSQNextCycle = true;
1469  instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1470  }
1471 
1472  if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1473 
1474  //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1475  if (fromCommit->commitInfo[tid].strictlyOrdered) {
1477  fromCommit->commitInfo[tid].strictlyOrderedLoad);
1478  fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit();
1479  } else {
1481  fromCommit->commitInfo[tid].nonSpecSeqNum);
1482  }
1483  }
1484 
1485  if (broadcast_free_entries) {
1486  toFetch->iewInfo[tid].iqCount =
1487  instQueue.getCount(tid);
1488  toFetch->iewInfo[tid].ldstqCount =
1489  ldstQueue.getCount(tid);
1490 
1491  toRename->iewInfo[tid].usedIQ = true;
1492  toRename->iewInfo[tid].freeIQEntries =
1494  toRename->iewInfo[tid].usedLSQ = true;
1495 
1496  toRename->iewInfo[tid].freeLQEntries =
1498  toRename->iewInfo[tid].freeSQEntries =
1500 
1501  wroteToTimeBuffer = true;
1502  }
1503 
1504  DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1505  tid, toRename->iewInfo[tid].dispatched);
1506  }
1507 
1508  DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1509  "LQ has %i free entries. SQ has %i free entries.\n",
1512 
1513  updateStatus();
1514 
1515  if (wroteToTimeBuffer) {
1516  DPRINTF(Activity, "Activity this cycle.\n");
1518  }
1519 }
1520 
1521 void
1523 {
1524  ThreadID tid = inst->threadNumber;
1525 
1526  cpu->executeStats[tid]->numInsts++;
1527 
1528 #if TRACING_ON
1529  if (debug::O3PipeView) {
1530  inst->completeTick = curTick() - inst->fetchTick;
1531  }
1532 #endif
1533 
1534  //
1535  // Control operations
1536  //
1537  if (inst->isControl()) {
1538  cpu->executeStats[tid]->numBranches++;
1539  }
1540 
1541  //
1542  // Memory operations
1543  //
1544  if (inst->isMemRef()) {
1545  cpu->executeStats[tid]->numMemRefs++;
1546 
1547  if (inst->isLoad()) {
1548  cpu->executeStats[tid]->numLoadInsts++;
1549  }
1550  }
1551 }
1552 
1553 void
1555 {
1556  ThreadID tid = inst->threadNumber;
1557 
1558  if (!fetchRedirect[tid] ||
1559  !toCommit->squash[tid] ||
1560  toCommit->squashedSeqNum[tid] > inst->seqNum) {
1561 
1562  if (inst->mispredicted()) {
1563  fetchRedirect[tid] = true;
1564 
1565  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1566  "Branch mispredict detected.\n",
1567  tid, inst->seqNum);
1568  DPRINTF(IEW, "[tid:%i] [sn:%llu] Predicted target was PC: %s\n",
1569  tid, inst->seqNum, inst->readPredTarg());
1570  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1571  "Redirecting fetch to PC: %s\n",
1572  tid, inst->seqNum, inst->pcState());
1573  // If incorrect, then signal the ROB that it must be squashed.
1574  squashDueToBranch(inst, tid);
1575 
1576  if (inst->readPredTaken()) {
1578  } else {
1580  }
1581  }
1582  }
1583 }
1584 
1585 } // namespace o3
1586 } // namespace gem5
gem5::o3::InstructionQueue::rescheduleMemInst
void rescheduleMemInst(const DynInstPtr &resched_inst)
Reschedules a memory instruction.
Definition: inst_queue.cc:1089
gem5::curTick
Tick curTick()
The universal simulation clock.
Definition: cur_tick.hh:46
fatal
#define fatal(...)
This implements a cprintf based fatal() function.
Definition: logging.hh:200
gem5::o3::LSQ::insertStore
void insertStore(const DynInstPtr &store_inst)
Inserts a store into the LSQ.
Definition: lsq.cc:229
gem5::o3::InstructionQueue::drainSanityCheck
void drainSanityCheck() const
Perform sanity checks after a drain.
Definition: inst_queue.cc:465
gem5::o3::IEW::skidCount
int skidCount()
Returns the max of the number of entries in all of the skid buffers.
Definition: iew.cc:578
gem5::o3::IEW::IEWStats::unblockCycles
statistics::Scalar unblockCycles
Stat for total number of unblocking cycles.
Definition: iew.hh:429
gem5::o3::IEW::IEWStats::dispStoreInsts
statistics::Scalar dispStoreInsts
Stat for total number of dispatched store instructions.
Definition: iew.hh:437
gem5::o3::LSQ::commitLoads
void commitLoads(InstSeqNum &youngest_inst, ThreadID tid)
Commits loads up until the given sequence number for a specific thread.
Definition: lsq.cc:253
gem5::NoFault
constexpr decltype(nullptr) NoFault
Definition: types.hh:253
gem5::o3::IEW::setTimeBuffer
void setTimeBuffer(TimeBuffer< TimeStruct > *tb_ptr)
Sets main time buffer used for backwards communication.
Definition: iew.cc:266
gem5::o3::IEW::toFetch
TimeBuffer< TimeStruct >::wire toFetch
Wire to write information heading to previous stages.
Definition: iew.hh:303
gem5::o3::IEW::insts
std::queue< DynInstPtr > insts[MaxThreads]
Queue of all instructions coming from rename this cycle.
Definition: iew.hh:333
gem5::o3::IEW::skidsEmpty
bool skidsEmpty()
Returns if all of the skid buffers are empty.
Definition: iew.cc:596
gem5::o3::IEW::IEWStats::executedInstStats
gem5::o3::IEW::IEWStats::ExecutedInstStats executedInstStats
gem5::o3::IEW::ppToCommit
ProbePointArg< DynInstPtr > * ppToCommit
To probe when instruction execution is complete.
Definition: iew.hh:126
gem5::o3::IEW::IEWStats::wbRate
statistics::Formula wbRate
Number of instructions per cycle written back.
Definition: iew.hh:474
gem5::o3::IEW::renameQueue
TimeBuffer< RenameStruct > * renameQueue
Rename instruction queue interface.
Definition: iew.hh:312
gem5::MipsISA::misc_reg::Count
@ Count
Definition: misc.hh:94
gem5::o3::IEW::IEWStats::blockCycles
statistics::Scalar blockCycles
Stat for total number of blocking cycles.
Definition: iew.hh:427
gem5::o3::InstructionQueue::isFull
bool isFull()
Returns whether or not the IQ is full.
Definition: inst_queue.cc:527
gem5::o3::IEW::IEWStats::producerInst
statistics::Vector producerInst
Number of instructions that wake consumers.
Definition: iew.hh:470
gem5::o3::IEW::checkSignalsAndUpdate
void checkSignalsAndUpdate(ThreadID tid)
Processes inputs and changes state accordingly.
Definition: iew.cc:668
gem5::o3::IEW::updateExeInstStats
void updateExeInstStats(const DynInstPtr &inst)
Updates execution stats based on the instruction.
Definition: iew.cc:1522
gem5::o3::LSQ::getCount
int getCount()
Returns the number of instructions in all of the queues.
Definition: lsq.cc:473
gem5::o3::LSQ::writebackStores
void writebackStores()
Attempts to write back stores until all cache ports are used or the interface becomes blocked.
Definition: lsq.cc:265
gem5::o3::LSQ::setActiveThreads
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets the pointer to the list of active threads.
Definition: lsq.cc:130
gem5::o3::IEW::dispatchStatus
StageStatus dispatchStatus[MaxThreads]
Dispatch status.
Definition: iew.hh:114
gem5::o3::IEW::updateStatus
void updateStatus()
Updates overall IEW status based on all of the stages' statuses.
Definition: iew.cc:612
gem5::o3::IEW::replayMemInst
void replayMemInst(const DynInstPtr &inst)
Re-executes all rescheduled memory instructions.
Definition: iew.cc:511
gem5::o3::IEW::ppMispredict
ProbePointArg< DynInstPtr > * ppMispredict
Probe points.
Definition: iew.hh:121
gem5::o3::IEW::Active
@ Active
Definition: iew.hh:95
gem5::o3::IEW::Unblocking
@ Unblocking
Definition: iew.hh:107
gem5::ArmISA::set
Bitfield< 12, 11 > set
Definition: misc_types.hh:760
gem5::o3::IEW::IEWStats::predictedNotTakenIncorrect
statistics::Scalar predictedNotTakenIncorrect
Stat for total number of incorrect predicted not taken branches.
Definition: iew.hh:449
gem5::o3::FUPool::takeOverFrom
void takeOverFrom()
Takes over from another CPU's thread.
Definition: fu_pool.hh:182
gem5::o3::IEW::takeOverFrom
void takeOverFrom()
Takes over from another CPU's thread.
Definition: iew.cc:353
gem5::o3::IEW::checkMisprediction
void checkMisprediction(const DynInstPtr &inst)
Check misprediction
Definition: iew.cc:1554
gem5::o3::IEW::fromRename
TimeBuffer< RenameStruct >::wire fromRename
Wire to get rename's output from rename queue.
Definition: iew.hh:315
gem5::o3::IEW::iewStats
gem5::o3::IEW::IEWStats iewStats
gem5::o3::InstructionQueue::commit
void commit(const InstSeqNum &inst, ThreadID tid=0)
Commits all instructions up to and including the given sequence number, for a specific thread.
Definition: inst_queue.cc:949
gem5::o3::IEW::clearStates
void clearStates(ThreadID tid)
Clear all thread-specific states.
Definition: iew.cc:254
gem5::o3::IEW::wakeDependents
void wakeDependents(const DynInstPtr &inst)
Wakes all dependents of a completed instruction.
Definition: iew.cc:499
gem5::o3::IEW::commitToIEWDelay
Cycles commitToIEWDelay
Commit to IEW delay.
Definition: iew.hh:377
gem5::o3::IEW::IEWStats::iqFullEvents
statistics::Scalar iqFullEvents
Stat for number of times the IQ becomes full.
Definition: iew.hh:441
gem5::o3::IEW::issueToExecQueue
TimeBuffer< IssueStruct > issueToExecQueue
Issue stage queue.
Definition: iew.hh:318
gem5::o3::IEW::IEWStats::wbFanout
statistics::Formula wbFanout
Average number of woken instructions per writeback.
Definition: iew.hh:476
gem5::o3::Scoreboard
Implements a simple scoreboard to track which registers are ready.
Definition: scoreboard.hh:54
gem5::o3::IEW::skidInsert
void skidInsert(ThreadID tid)
Inserts unused instructions of a thread into the skid buffer.
Definition: iew.cc:557
gem5::o3::IEW::writebackInsts
void writebackInsts()
Writebacks instructions.
Definition: iew.cc:1343
gem5::o3::InstructionQueue::IQIOStats::intInstQueueReads
statistics::Scalar intInstQueueReads
Definition: inst_queue.hh:550
gem5::o3::IEW::emptyRenameInsts
void emptyRenameInsts(ThreadID tid)
Removes instructions from rename from a thread's instruction list.
Definition: iew.cc:744
gem5::o3::IEW::activeThreads
std::list< ThreadID > * activeThreads
Pointer to list of active threads.
Definition: iew.hh:412
dyn_inst.hh
gem5::o3::IEW::exeStatus
StageStatus exeStatus
Execute status.
Definition: iew.hh:116
gem5::o3::IEW::toCommit
TimeBuffer< IEWStruct >::wire toCommit
Wire to write infromation heading to commit.
Definition: iew.hh:330
gem5::o3::IEW::dispatchInsts
void dispatchInsts(ThreadID tid)
Dispatches instructions to IQ and LSQ.
Definition: iew.cc:839
gem5::o3::IEW::sortInsts
void sortInsts()
Sorts instructions coming from rename into lists separated by thread.
Definition: iew.cc:731
gem5::o3::IEW::IEW
IEW(CPU *_cpu, const BaseO3CPUParams &params)
Constructs a IEW with the given parameters.
Definition: iew.cc:67
gem5::o3::IEW::checkStall
bool checkStall(ThreadID tid)
Checks if any of the stall conditions are currently true.
Definition: iew.cc:652
gem5::o3::InstructionQueue::recordProducer
void recordProducer(const DynInstPtr &inst)
Records the instruction as the producer of a register without adding it to the rest of the IQ.
Definition: inst_queue.hh:215
gem5::ArmISA::i
Bitfield< 7 > i
Definition: misc_types.hh:67
iew.hh
gem5::o3::InstructionQueue::cacheUnblocked
void cacheUnblocked()
Notify instruction queue that a previous blockage has resolved.
Definition: inst_queue.cc:1125
gem5::o3::InstructionQueue::takeOverFrom
void takeOverFrom()
Takes over execution from another CPU's thread.
Definition: inst_queue.cc:474
gem5::o3::IEW::toRename
TimeBuffer< TimeStruct >::wire toRename
Wire to write information heading to previous stages.
Definition: iew.hh:309
gem5::o3::IEW::squash
void squash(ThreadID tid)
Squashes instructions in IEW for a specific thread.
Definition: iew.cc:380
gem5::o3::IEW::IEWStats::ExecutedInstStats::numSquashedInsts
statistics::Scalar numSquashedInsts
Stat for total number of squashed instructions skipped at execute.
Definition: iew.hh:460
gem5::o3::IEW::IEWStats::writebackCount
statistics::Vector writebackCount
Number of instructions that writeback.
Definition: iew.hh:468
gem5::o3::InstructionQueue::setIssueToExecuteQueue
void setIssueToExecuteQueue(TimeBuffer< IssueStruct > *i2eQueue)
Sets the timer buffer between issue and execute.
Definition: inst_queue.cc:439
gem5::o3::IEW::Inactive
@ Inactive
Definition: iew.hh:96
gem5::o3::LSQ::executeStore
Fault executeStore(const DynInstPtr &inst)
Executes a store.
Definition: lsq.cc:245
gem5::o3::IEW::wakeCPU
void wakeCPU()
Tells the CPU to wakeup if it has descheduled itself due to no activity.
Definition: iew.cc:765
gem5::o3::IEW::Blocked
@ Blocked
Definition: iew.hh:103
gem5::o3::IEW::startupStage
void startupStage()
Initializes stage; sends back the number of free IQ and LSQ entries.
Definition: iew.cc:231
gem5::RefCountingPtr< DynInst >
gem5::o3::IEW::rescheduleMemInst
void rescheduleMemInst(const DynInstPtr &inst)
Tells memory dependence unit that a memory instruction needs to be rescheduled.
Definition: iew.cc:505
gem5::TimeBuffer
Definition: timebuf.hh:40
gem5::o3::LSQ::sqFull
bool sqFull()
Returns if any of the SQs are full.
Definition: lsq.cc:662
gem5::o3::IEW::Squashing
@ Squashing
Definition: iew.hh:106
gem5::o3::CPU::checker
gem5::Checker< DynInstPtr > * checker
Pointer to the checker, which can dynamically verify instruction results at run time.
Definition: cpu.hh:524
gem5::o3::LSQ::violation
bool violation()
Returns whether or not there was a memory ordering violation.
Definition: lsq.cc:289
gem5::o3::InstructionQueue::wakeDependents
int wakeDependents(const DynInstPtr &completed_inst)
Wakes all dependents of a completed instruction.
Definition: inst_queue.cc:966
gem5::o3::CPU::deactivateStage
void deactivateStage(const StageIdx idx)
Changes a stage's status to inactive within the activity recorder.
Definition: cpu.hh:496
gem5::o3::IEW::wroteToTimeBuffer
bool wroteToTimeBuffer
Records if IEW has written to the time buffer this cycle, so that the CPU can deschedule itself if th...
Definition: iew.hh:348
gem5::o3::InstructionQueue::iqIOStats
gem5::o3::InstructionQueue::IQIOStats iqIOStats
gem5::o3::IEW::fromCommit
TimeBuffer< TimeStruct >::wire fromCommit
Wire to get commit's output from backwards time buffer.
Definition: iew.hh:306
timebuf.hh
gem5::BaseCPU::numThreads
ThreadID numThreads
Number of threads we're actually simulating (<= SMT_MAX_THREADS).
Definition: base.hh:384
gem5::o3::IEW::instQueue
InstructionQueue instQueue
Instruction queue.
Definition: iew.hh:355
gem5::o3::LSQ::numHtmStarts
int numHtmStarts(ThreadID tid) const
Definition: lsq.cc:344
gem5::o3::IEW::IEWStats::consumerInst
statistics::Vector consumerInst
Number of instructions that wake up from producers.
Definition: iew.hh:472
gem5::o3::IEW::block
void block(ThreadID tid)
Sets Dispatch to blocked, and signals back to other stages to block.
Definition: iew.cc:465
gem5::o3::IEW::IEWStats::dispSquashedInsts
statistics::Scalar dispSquashedInsts
Stat for total number of squashed instructions dispatch skips.
Definition: iew.hh:433
gem5::BaseCPU::baseStats
gem5::BaseCPU::BaseCPUStats baseStats
gem5::o3::IEW::_status
Status _status
Overall stage status.
Definition: iew.hh:112
gem5::o3::CPU::IEWIdx
@ IEWIdx
Definition: cpu.hh:456
gem5::o3::FUPool::isDrained
bool isDrained() const
Have all the FUs drained?
Definition: fu_pool.cc:244
gem5::o3::LSQ::tick
void tick()
Ticks the LSQ.
Definition: lsq.cc:175
gem5::o3::IEW::IEWStats::instsToCommit
statistics::Vector instsToCommit
Number of instructions sent to commit.
Definition: iew.hh:466
gem5::o3::CPU
O3CPU class, has each of the stages (fetch through commit) within it, as well as all of the time buff...
Definition: cpu.hh:93
gem5::o3::IEW::isDrained
bool isDrained() const
Has the stage drained?
Definition: iew.cc:316
gem5::o3::InstructionQueue::setTimeBuffer
void setTimeBuffer(TimeBuffer< TimeStruct > *tb_ptr)
Sets the global time buffer.
Definition: inst_queue.cc:445
gem5::Named::name
virtual std::string name() const
Definition: named.hh:47
gem5::Fault
std::shared_ptr< FaultBase > Fault
Definition: types.hh:248
gem5::o3::LSQ::isDrained
bool isDrained() const
Has the LSQ drained?
Definition: lsq.cc:146
gem5::o3::IEW::squashDueToBranch
void squashDueToBranch(const DynInstPtr &inst, ThreadID tid)
Sends commit proper information for a squash due to a branch mispredict.
Definition: iew.cc:415
DPRINTF
#define DPRINTF(x,...)
Definition: trace.hh:210
ADD_STAT
#define ADD_STAT(n,...)
Convenience macro to add a stat to a statistics group.
Definition: group.hh:75
gem5::o3::Scoreboard::setReg
void setReg(PhysRegIdPtr phys_reg)
Sets the register as ready.
Definition: scoreboard.hh:97
gem5::BaseCPU::BaseCPUStats::numCycles
statistics::Scalar numCycles
Definition: base.hh:640
gem5::o3::IEW
IEW handles both single threaded and SMT IEW (issue/execute/writeback).
Definition: iew.hh:87
gem5::o3::InstructionQueue::deferMemInst
void deferMemInst(const DynInstPtr &deferred_inst)
Defers a memory instruction when its DTB translation incurs a hw page table walk.
Definition: inst_queue.cc:1108
cpu.hh
gem5::o3::IEW::skidBuffer
std::queue< DynInstPtr > skidBuffer[MaxThreads]
Skid buffer between rename and IEW.
Definition: iew.hh:336
gem5::o3::IEW::fuPool
FUPool * fuPool
Pointer to the functional unit pool.
Definition: iew.hh:361
gem5::o3::CPU::activateStage
void activateStage(const StageIdx idx)
Changes a stage's status to active within the activity recorder.
Definition: cpu.hh:489
gem5::o3::LSQ::getLatestHtmUid
uint64_t getLatestHtmUid(ThreadID tid) const
Definition: lsq.cc:368
gem5::o3::LSQ::willWB
bool willWB()
Returns if the LSQ will write back to memory this cycle.
Definition: lsq.cc:742
gem5::o3::LSQ::numFreeLoadEntries
unsigned numFreeLoadEntries()
Returns the number of free load entries.
Definition: lsq.cc:524
gem5::o3::InstructionQueue::numFreeEntries
unsigned numFreeEntries()
Returns total number of free entries.
Definition: inst_queue.cc:513
gem5::o3::IEW::wbStatus
StageStatus wbStatus
Writeback status.
Definition: iew.hh:118
gem5::o3::IEW::activityThisCycle
void activityThisCycle()
Reports to the CPU that there is activity this cycle.
Definition: iew.cc:771
gem5::o3::CPU::wakeCPU
void wakeCPU()
Wakes the CPU, rescheduling the CPU if it's not already active.
Definition: cpu.cc:1298
gem5::o3::IEW::renameToIEWDelay
Cycles renameToIEWDelay
Rename to IEW delay.
Definition: iew.hh:380
gem5::o3::IEW::iewQueue
TimeBuffer< IEWStruct > * iewQueue
IEW stage time buffer.
Definition: iew.hh:327
gem5::o3::FUPool::processFreeUnits
void processFreeUnits()
Frees all FUs on the list.
Definition: fu_pool.cc:197
gem5::o3::MaxWidth
static constexpr int MaxWidth
Definition: limits.hh:37
fu_pool.hh
gem5::o3::IEW::dispatchWidth
unsigned dispatchWidth
Width of dispatch, in instructions.
Definition: iew.hh:390
gem5::o3::IEW::Running
@ Running
Definition: iew.hh:102
gem5::o3::InstructionQueue::scheduleNonSpec
void scheduleNonSpec(const InstSeqNum &inst)
Schedules a single specific non-speculative instruction.
Definition: inst_queue.cc:922
gem5::o3::IEW::IEWStats::memOrderViolationEvents
statistics::Scalar memOrderViolationEvents
Stat for total number of memory ordering violation events.
Definition: iew.hh:445
gem5::o3::IEW::tick
void tick()
Ticks IEW stage, causing Dispatch, the IQ, the LSQ, Execute, and Writeback to run for one cycle.
Definition: iew.cc:1393
gem5::o3::IEW::IEWStats::dispatchedInsts
statistics::Scalar dispatchedInsts
Stat for total number of instructions dispatched.
Definition: iew.hh:431
gem5::o3::IEW::printAvailableInsts
void printAvailableInsts()
Debug function to print instructions that are issued this cycle.
Definition: iew.cc:1075
gem5::o3::IEW::IEWStats::ExecutedInstStats::ExecutedInstStats
ExecutedInstStats(CPU *cpu)
Definition: iew.cc:218
gem5::o3::IEW::cpu
CPU * cpu
CPU pointer.
Definition: iew.hh:343
gem5::o3::LSQ::getMemDepViolator
DynInstPtr getMemDepViolator(ThreadID tid)
Gets the instruction that caused the memory ordering violation.
Definition: lsq.cc:308
gem5::o3::InstructionQueue::getInstToExecute
DynInstPtr getInstToExecute()
Returns the oldest scheduled instruction, and removes it from the list of instructions waiting to exe...
Definition: inst_queue.cc:662
gem5::BaseCPU::executeStats
std::vector< std::unique_ptr< ExecuteCPUStats > > executeStats
Definition: base.hh:820
gem5::o3::IEW::wbWidth
unsigned wbWidth
Writeback width.
Definition: iew.hh:406
gem5::o3::LSQ::squash
void squash(const InstSeqNum &squashed_num, ThreadID tid)
Squash instructions from a thread until the specified sequence number.
Definition: lsq.cc:283
gem5::o3::IEW::timeBuffer
TimeBuffer< TimeStruct > * timeBuffer
Pointer to main time buffer used for backwards communication.
Definition: iew.hh:300
gem5::o3::LSQ::drainSanityCheck
void drainSanityCheck() const
Perform sanity checks after a drain.
Definition: lsq.cc:137
gem5::o3::IEW::IEWStats::predictedTakenIncorrect
statistics::Scalar predictedTakenIncorrect
Stat for total number of incorrect predicted taken branches.
Definition: iew.hh:447
gem5::ProbePointArg
ProbePointArg generates a point for the class of Arg.
Definition: thermal_domain.hh:54
gem5::o3::IEW::fetchRedirect
bool fetchRedirect[MaxThreads]
Records if there is a fetch redirect on this cycle for each thread.
Definition: iew.hh:369
gem5::o3::IEW::IEWStats::squashCycles
statistics::Scalar squashCycles
Stat for total number of squashing cycles.
Definition: iew.hh:425
gem5::o3::InstructionQueue::insertBarrier
void insertBarrier(const DynInstPtr &barr_inst)
Inserts a memory or write barrier into the IQ to make sure loads and stores are ordered properly.
Definition: inst_queue.cc:654
gem5::o3::IEW::IEWStats::dispLoadInsts
statistics::Scalar dispLoadInsts
Stat for total number of dispatched load instructions.
Definition: iew.hh:435
gem5::SimObject::getProbeManager
ProbeManager * getProbeManager()
Get the probe manager for this object.
Definition: sim_object.cc:117
gem5::o3::IEW::fromIssue
TimeBuffer< IssueStruct >::wire fromIssue
Wire to read information from the issue stage time queue.
Definition: iew.hh:321
gem5::o3::MaxThreads
static constexpr int MaxThreads
Definition: limits.hh:38
gem5::o3::CPU::activityThisCycle
void activityThisCycle()
Records that there was time buffer activity this cycle.
Definition: cpu.hh:485
gem5::o3::IEW::unblock
void unblock(ThreadID tid)
Unblocks Dispatch if the skid buffer is empty, and signals back to other stages to unblock.
Definition: iew.cc:483
gem5::o3::InstructionQueue::squash
void squash(ThreadID tid)
Squashes instructions for a thread.
Definition: inst_queue.cc:1169
gem5::o3::IEW::issueWidth
unsigned issueWidth
Width of issue, in instructions.
Definition: iew.hh:393
gem5::o3::LSQ::insertLoad
void insertLoad(const DynInstPtr &load_inst)
Inserts a load into the LSQ.
Definition: lsq.cc:221
gem5::o3::IEW::instToCommit
void instToCommit(const DynInstPtr &inst)
Sends an instruction to commit through the time buffer.
Definition: iew.cc:529
gem5::o3::IEW::drainSanityCheck
void drainSanityCheck() const
Perform sanity checks after a drain.
Definition: iew.cc:344
gem5::o3::IEW::ppExecute
ProbePointArg< DynInstPtr > * ppExecute
To probe when instruction execution begins.
Definition: iew.hh:124
gem5::o3::IEW::IEWStats::dispNonSpecInsts
statistics::Scalar dispNonSpecInsts
Stat for total number of dispatched non speculative insts.
Definition: iew.hh:439
gem5::o3::IEW::blockMemInst
void blockMemInst(const DynInstPtr &inst)
Moves memory instruction onto the list of cache blocked instructions.
Definition: iew.cc:517
gem5::o3::IEW::wbCycle
unsigned wbCycle
Cycle number within the queue of instructions being written back.
Definition: iew.hh:403
gem5::o3::IEW::cacheUnblocked
void cacheUnblocked()
Notifies that the cache has become unblocked.
Definition: iew.cc:523
gem5::o3::InstructionQueue::isDrained
bool isDrained() const
Determine if we are drained.
Definition: inst_queue.cc:453
gem5::o3::IEW::IEWStats::lsqFullEvents
statistics::Scalar lsqFullEvents
Stat for number of times the LSQ becomes full.
Definition: iew.hh:443
gem5::o3::InstructionQueue::insertNonSpec
void insertNonSpec(const DynInstPtr &new_inst)
Inserts a new, non-speculative instruction into the IQ.
Definition: inst_queue.cc:608
gem5::o3::InstructionQueue::setActiveThreads
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets active threads list.
Definition: inst_queue.cc:433
gem5::o3::InstructionQueue::blockMemInst
void blockMemInst(const DynInstPtr &blocked_inst)
Defers a memory instruction when it is cache blocked.
Definition: inst_queue.cc:1114
gem5::o3::LSQ::numFreeStoreEntries
unsigned numFreeStoreEntries()
Returns the number of free store entries.
Definition: lsq.cc:541
gem5::o3::IEW::wbNumInst
unsigned wbNumInst
Index into queue of instructions being written back.
Definition: iew.hh:396
gem5::o3::IEW::skidBufferMax
unsigned skidBufferMax
Maximum size of the skid buffer.
Definition: iew.hh:415
gem5::o3::IEW::deactivateStage
void deactivateStage()
Tells CPU that the IEW stage is inactive and idle.
Definition: iew.cc:785
gem5::o3::IEW::scoreboard
Scoreboard * scoreboard
Scoreboard pointer.
Definition: iew.hh:339
gem5::o3::IEW::ppDispatch
ProbePointArg< DynInstPtr > * ppDispatch
Definition: iew.hh:122
gem5::o3::IEW::setRenameQueue
void setRenameQueue(TimeBuffer< RenameStruct > *rq_ptr)
Sets time buffer for getting instructions coming from rename.
Definition: iew.cc:283
gem5::o3::InstructionQueue::insert
void insert(const DynInstPtr &new_inst)
Inserts a new instruction into the IQ.
Definition: inst_queue.cc:563
gem5::statistics::Group
Statistics container.
Definition: group.hh:92
gem5::o3::IEW::updateLSQNextCycle
bool updateLSQNextCycle
Records if the LSQ needs to be updated on the next cycle, so that IEW knows if there will be activity...
Definition: iew.hh:365
gem5::o3::InstructionQueue::replayMemInst
void replayMemInst(const DynInstPtr &replay_inst)
Replays a memory instruction.
Definition: inst_queue.cc:1102
gem5::o3::IEW::numThreads
ThreadID numThreads
Number of active threads.
Definition: iew.hh:409
gem5::o3::IEW::IEWStats::ExecutedInstStats::numSwp
statistics::Vector numSwp
Number of executed software prefetches.
Definition: iew.hh:462
gem5::o3::IEW::IEWStats::IEWStats
IEWStats(CPU *cpu)
Definition: iew.cc:144
gem5::o3::IEW::squashDueToMemOrder
void squashDueToMemOrder(const DynInstPtr &inst, ThreadID tid)
Sends commit proper information for a squash due to a memory order violation.
Definition: iew.cc:439
gem5::o3::LSQ::getDataPort
RequestPort & getDataPort()
Definition: lsq.hh:892
gem5::o3::LSQ::takeOverFrom
void takeOverFrom()
Takes over execution from another CPU's thread.
Definition: lsq.cc:164
gem5::o3::LSQ::commitStores
void commitStores(InstSeqNum &youngest_inst, ThreadID tid)
Commits stores up until the given sequence number for a specific thread.
Definition: lsq.cc:259
gem5::statistics::DataWrap::flags
Derived & flags(Flags _flags)
Set the flags and marks this stat to print at the end of simulation.
Definition: statistics.hh:357
gem5::o3::InstructionQueue::scheduleReadyInsts
void scheduleReadyInsts()
Schedules ready instructions, adding the ready ones (oldest first) to the queue to execute.
Definition: inst_queue.cc:752
gem5::o3::IEW::ldstQueue
LSQ ldstQueue
Load / store queue.
Definition: iew.hh:358
std::list< ThreadID >
gem5
Reference material can be found at the JEDEC website: UFS standard http://www.jedec....
Definition: gpu_translation_state.hh:37
gem5::statistics::total
const FlagsType total
Print the total.
Definition: info.hh:59
gem5::o3::IEW::setIEWQueue
void setIEWQueue(TimeBuffer< IEWStruct > *iq_ptr)
Sets time buffer to pass on instructions to commit.
Definition: iew.cc:292
limits.hh
gem5::statistics::VectorBase::init
Derived & init(size_type size)
Set this vector to have the given size.
Definition: statistics.hh:1039
gem5::o3::LSQ::lqFull
bool lqFull()
Returns if any of the LQs are full.
Definition: lsq.cc:635
gem5::o3::IEW::dispatch
void dispatch(ThreadID tid)
Determines proper actions to take given Dispatch's status.
Definition: iew.cc:792
gem5::o3::LSQ::numHtmStops
int numHtmStops(ThreadID tid) const
Definition: lsq.cc:352
gem5::o3::IEW::updatedQueues
bool updatedQueues
Records if the queues have been changed (inserted or issued insts), so that IEW knows to broadcast th...
Definition: iew.hh:374
gem5::o3::IEW::issueToExecuteDelay
Cycles issueToExecuteDelay
Issue to execute delay.
Definition: iew.hh:387
gem5::o3::IEW::Idle
@ Idle
Definition: iew.hh:104
gem5::o3::LSQ::executeLoad
Fault executeLoad(const DynInstPtr &inst)
Executes a load.
Definition: lsq.cc:237
gem5::o3::IEW::activateStage
void activateStage()
Tells CPU that the IEW stage is active and running.
Definition: iew.cc:778
gem5::ThreadID
int16_t ThreadID
Thread index/ID type.
Definition: types.hh:235
gem5::o3::IEW::name
std::string name() const
Returns the name of the IEW stage.
Definition: iew.cc:118
gem5::o3::InstructionQueue::violation
void violation(const DynInstPtr &store, const DynInstPtr &faulting_load)
Indicates an ordering violation between a store and a load.
Definition: inst_queue.cc:1161
panic
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:188
gem5::o3::IEW::setScoreboard
void setScoreboard(Scoreboard *sb_ptr)
Sets pointer to the scoreboard.
Definition: iew.cc:310
gem5::o3::IEW::setActiveThreads
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets pointer to list of active threads.
Definition: iew.cc:301
gem5::o3::InstructionQueue::hasReadyInsts
bool hasReadyInsts()
Returns if there are any ready instructions in the IQ.
Definition: inst_queue.cc:547
gem5::o3::IEW::executeInsts
void executeInsts()
Executes instructions.
Definition: iew.cc:1097
gem5::o3::IEW::regProbePoints
void regProbePoints()
Registers probes.
Definition: iew.cc:124
gem5::o3::InstructionQueue::getCount
unsigned getCount(ThreadID tid)
Returns the number of used entries for a thread.
Definition: inst_queue.hh:275

Generated on Sun Jul 30 2023 01:56:52 for gem5 by doxygen 1.8.17