gem5  v20.0.0.3
Topology.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met: redistributions of source code must retain the above copyright
8  * notice, this list of conditions and the following disclaimer;
9  * redistributions in binary form must reproduce the above copyright
10  * notice, this list of conditions and the following disclaimer in the
11  * documentation and/or other materials provided with the distribution;
12  * neither the name of the copyright holders nor the names of its
13  * contributors may be used to endorse or promote products derived from
14  * this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
30 
31 #include <cassert>
32 
33 #include "base/trace.hh"
34 #include "debug/RubyNetwork.hh"
39 
40 using namespace std;
41 
42 const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
43 
44 // Note: In this file, we use the first 2*m_nodes SwitchIDs to
45 // represent the input and output endpoint links. These really are
46 // not 'switches', as they will not have a Switch object allocated for
47 // them. The first m_nodes SwitchIDs are the links into the network,
48 // the second m_nodes set of SwitchIDs represent the the output queues
49 // of the network.
50 
51 Topology::Topology(uint32_t num_routers,
52  const vector<BasicExtLink *> &ext_links,
53  const vector<BasicIntLink *> &int_links)
54  : m_nodes(MachineType_base_number(MachineType_NUM)),
55  m_number_of_switches(num_routers),
56  m_ext_link_vector(ext_links), m_int_link_vector(int_links)
57 {
58  // Total nodes/controllers in network
59  assert(m_nodes > 1);
60 
61  // analyze both the internal and external links, create data structures.
62  // The python created external links are bi-directional,
63  // and the python created internal links are uni-directional.
64  // The networks and topology utilize uni-directional links.
65  // Thus each external link is converted to two calls to addLink,
66  // one for each direction.
67  //
68  // External Links
69  for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
70  i != ext_links.end(); ++i) {
71  BasicExtLink *ext_link = (*i);
72  AbstractController *abs_cntrl = ext_link->params()->ext_node;
73  BasicRouter *router = ext_link->params()->int_node;
74 
75  int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
76  int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
77  int ext_idx2 = ext_idx1 + m_nodes;
78  int int_idx = router->params()->router_id + 2*m_nodes;
79 
80  // create the internal uni-directional links in both directions
81  // ext to int
82  addLink(ext_idx1, int_idx, ext_link);
83  // int to ext
84  addLink(int_idx, ext_idx2, ext_link);
85  }
86 
87  // Internal Links
88  for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
89  i != int_links.end(); ++i) {
90  BasicIntLink *int_link = (*i);
91  BasicRouter *router_src = int_link->params()->src_node;
92  BasicRouter *router_dst = int_link->params()->dst_node;
93 
94  PortDirection src_outport = int_link->params()->src_outport;
95  PortDirection dst_inport = int_link->params()->dst_inport;
96 
97  // Store the IntLink pointers for later
98  m_int_link_vector.push_back(int_link);
99 
100  int src = router_src->params()->router_id + 2*m_nodes;
101  int dst = router_dst->params()->router_id + 2*m_nodes;
102 
103  // create the internal uni-directional link from src to dst
104  addLink(src, dst, int_link, src_outport, dst_inport);
105  }
106 }
107 
108 void
110 {
111  // Find maximum switchID
112  SwitchID max_switch_id = 0;
113  for (LinkMap::const_iterator i = m_link_map.begin();
114  i != m_link_map.end(); ++i) {
115  std::pair<SwitchID, SwitchID> src_dest = (*i).first;
116  max_switch_id = max(max_switch_id, src_dest.first);
117  max_switch_id = max(max_switch_id, src_dest.second);
118  }
119 
120  // Initialize weight, latency, and inter switched vectors
121  int num_switches = max_switch_id+1;
122  Matrix topology_weights(num_switches,
123  vector<int>(num_switches, INFINITE_LATENCY));
124  Matrix component_latencies(num_switches,
125  vector<int>(num_switches, -1));
126  Matrix component_inter_switches(num_switches,
127  vector<int>(num_switches, 0));
128 
129  // Set identity weights to zero
130  for (int i = 0; i < topology_weights.size(); i++) {
131  topology_weights[i][i] = 0;
132  }
133 
134  // Fill in the topology weights and bandwidth multipliers
135  for (LinkMap::const_iterator i = m_link_map.begin();
136  i != m_link_map.end(); ++i) {
137  std::pair<int, int> src_dest = (*i).first;
138  BasicLink* link = (*i).second.link;
139  int src = src_dest.first;
140  int dst = src_dest.second;
141  component_latencies[src][dst] = link->m_latency;
142  topology_weights[src][dst] = link->m_weight;
143  }
144 
145  // Walk topology and hookup the links
146  Matrix dist = shortest_path(topology_weights, component_latencies,
147  component_inter_switches);
148 
149  for (int i = 0; i < topology_weights.size(); i++) {
150  for (int j = 0; j < topology_weights[i].size(); j++) {
151  int weight = topology_weights[i][j];
152  if (weight > 0 && weight != INFINITE_LATENCY) {
153  NetDest destination_set =
154  shortest_path_to_node(i, j, topology_weights, dist);
155  makeLink(net, i, j, destination_set);
156  }
157  }
158  }
159 }
160 
161 void
163  PortDirection src_outport_dirn,
164  PortDirection dst_inport_dirn)
165 {
166  assert(src <= m_number_of_switches+m_nodes+m_nodes);
167  assert(dest <= m_number_of_switches+m_nodes+m_nodes);
168 
169  std::pair<int, int> src_dest_pair;
170  LinkEntry link_entry;
171 
172  src_dest_pair.first = src;
173  src_dest_pair.second = dest;
174  link_entry.link = link;
175  link_entry.src_outport_dirn = src_outport_dirn;
176  link_entry.dst_inport_dirn = dst_inport_dirn;
177  m_link_map[src_dest_pair] = link_entry;
178 }
179 
180 void
182  const NetDest& routing_table_entry)
183 {
184  // Make sure we're not trying to connect two end-point nodes
185  // directly together
186  assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
187 
188  std::pair<int, int> src_dest;
189  LinkEntry link_entry;
190 
191  if (src < m_nodes) {
192  src_dest.first = src;
193  src_dest.second = dest;
194  link_entry = m_link_map[src_dest];
195  net->makeExtInLink(src, dest - (2 * m_nodes), link_entry.link,
196  routing_table_entry);
197  } else if (dest < 2*m_nodes) {
198  assert(dest >= m_nodes);
199  NodeID node = dest - m_nodes;
200  src_dest.first = src;
201  src_dest.second = dest;
202  link_entry = m_link_map[src_dest];
203  net->makeExtOutLink(src - (2 * m_nodes), node, link_entry.link,
204  routing_table_entry);
205  } else {
206  assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
207  src_dest.first = src;
208  src_dest.second = dest;
209  link_entry = m_link_map[src_dest];
210  net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
211  link_entry.link,
212  routing_table_entry,
213  link_entry.src_outport_dirn,
214  link_entry.dst_inport_dirn);
215  }
216 }
217 
218 // The following all-pairs shortest path algorithm is based on the
219 // discussion from Cormen et al., Chapter 26.1.
220 void
221 Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
222  Matrix &inter_switches)
223 {
224  bool change = true;
225  int nodes = current_dist.size();
226 
227  while (change) {
228  change = false;
229  for (int i = 0; i < nodes; i++) {
230  for (int j = 0; j < nodes; j++) {
231  int minimum = current_dist[i][j];
232  int previous_minimum = minimum;
233  int intermediate_switch = -1;
234  for (int k = 0; k < nodes; k++) {
235  minimum = min(minimum,
236  current_dist[i][k] + current_dist[k][j]);
237  if (previous_minimum != minimum) {
238  intermediate_switch = k;
239  inter_switches[i][j] =
240  inter_switches[i][k] +
241  inter_switches[k][j] + 1;
242  }
243  previous_minimum = minimum;
244  }
245  if (current_dist[i][j] != minimum) {
246  change = true;
247  current_dist[i][j] = minimum;
248  assert(intermediate_switch >= 0);
249  assert(intermediate_switch < latencies[i].size());
250  latencies[i][j] = latencies[i][intermediate_switch] +
251  latencies[intermediate_switch][j];
252  }
253  }
254  }
255  }
256 }
257 
258 Matrix
259 Topology::shortest_path(const Matrix &weights, Matrix &latencies,
260  Matrix &inter_switches)
261 {
262  Matrix dist = weights;
263  extend_shortest_path(dist, latencies, inter_switches);
264  return dist;
265 }
266 
267 bool
269  SwitchID final, const Matrix &weights,
270  const Matrix &dist)
271 {
272  return weights[src][next] + dist[next][final] == dist[src][final];
273 }
274 
275 NetDest
277  const Matrix &weights, const Matrix &dist)
278 {
279  NetDest result;
280  int d = 0;
281  int machines;
282  int max_machines;
283 
284  machines = MachineType_NUM;
285  max_machines = MachineType_base_number(MachineType_NUM);
286 
287  for (int m = 0; m < machines; m++) {
288  for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
289  // we use "d+max_machines" below since the "destination"
290  // switches for the machines are numbered
291  // [MachineType_base_number(MachineType_NUM)...
292  // 2*MachineType_base_number(MachineType_NUM)-1] for the
293  // component network
294  if (link_is_shortest_path_to_node(src, next, d + max_machines,
295  weights, dist)) {
296  MachineID mach = {(MachineType)m, i};
297  result.add(mach);
298  }
299  d++;
300  }
301  }
302 
303  DPRINTF(RubyNetwork, "Returning shortest path\n"
304  "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
305  "src: %d, next: %d, result: %s\n",
306  (src-(2*max_machines)), (next-(2*max_machines)),
307  src, next, result);
308 
309  return result;
310 }
#define DPRINTF(x,...)
Definition: trace.hh:225
const int INFINITE_LATENCY
Definition: Topology.cc:42
virtual void makeExtInLink(NodeID src, SwitchID dest, BasicLink *link, const NetDest &routing_table_entry)=0
Bitfield< 7 > i
STL pair class.
Definition: stl.hh:58
Bitfield< 0 > m
void extend_shortest_path(Matrix &current_dist, Matrix &latencies, Matrix &inter_switches)
Definition: Topology.cc:221
BasicLink * link
Definition: Topology.hh:59
const uint32_t m_nodes
Definition: Topology.hh:96
bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, const Matrix &weights, const Matrix &dist)
Definition: Topology.cc:268
PortDirection src_outport_dirn
Definition: Topology.hh:60
Overload hash function for BasicBlockRange type.
Definition: vec_reg.hh:587
virtual void makeExtOutLink(SwitchID src, NodeID dest, BasicLink *link, const NetDest &routing_table_entry)=0
void add(MachineID newElement)
Definition: NetDest.cc:39
STL vector class.
Definition: stl.hh:37
NodeID getVersion() const
unsigned int NodeID
Definition: TypeDefines.hh:34
unsigned int SwitchID
Definition: TypeDefines.hh:35
std::vector< std::vector< int > > shortest_path(const Matrix &weights, Matrix &latencies, Matrix &inter_switches)
Definition: Topology.cc:259
Bitfield< 23 > k
Definition: dt_constants.hh:78
Bitfield< 9 > d
std::string PortDirection
Definition: Topology.hh:55
PortDirection dst_inport_dirn
Definition: Topology.hh:61
const uint32_t m_number_of_switches
Definition: Topology.hh:97
LinkMap m_link_map
Definition: Topology.hh:102
Bitfield< 24 > j
void addLink(SwitchID src, SwitchID dest, BasicLink *link, PortDirection src_outport_dirn="", PortDirection dest_inport_dirn="")
Definition: Topology.cc:162
virtual void makeInternalLink(SwitchID src, SwitchID dest, BasicLink *link, const NetDest &routing_table_entry, PortDirection src_outport, PortDirection dst_inport)=0
MachineType getType() const
const Params * params() const
Definition: BasicRouter.hh:44
std::vector< BasicIntLink * > m_int_link_vector
Definition: Topology.hh:100
Topology(uint32_t num_routers, const std::vector< BasicExtLink *> &ext_links, const std::vector< BasicIntLink *> &int_links)
Definition: Topology.cc:51
void createLinks(Network *net)
Definition: Topology.cc:109
void makeLink(Network *net, SwitchID src, SwitchID dest, const NetDest &routing_table_entry)
Definition: Topology.cc:181
const FlagsType dist
Print the distribution.
Definition: info.hh:55
NetDest shortest_path_to_node(SwitchID src, SwitchID next, const Matrix &weights, const Matrix &dist)
Definition: Topology.cc:276

Generated on Fri Jul 3 2020 15:53:04 for gem5 by doxygen 1.8.13