gem5  v20.0.0.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
iew_impl.hh
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2013, 2018 ARM Limited
3  * Copyright (c) 2013 Advanced Micro Devices, Inc.
4  * All rights reserved.
5  *
6  * The license below extends only to copyright in the software and shall
7  * not be construed as granting a license to any other intellectual
8  * property including but not limited to intellectual property relating
9  * to a hardware implementation of the functionality of the software
10  * licensed hereunder. You may use the software subject to the license
11  * terms below provided that you ensure that this notice is replicated
12  * unmodified and in its entirety in all distributions of the software,
13  * modified or unmodified, in source code or in binary form.
14  *
15  * Copyright (c) 2004-2006 The Regents of The University of Michigan
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 #ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
43 #define __CPU_O3_IEW_IMPL_IMPL_HH__
44 
45 // @todo: Fix the instantaneous communication among all the stages within
46 // iew. There's a clear delay between issue and execute, yet backwards
47 // communication happens simultaneously.
48 
49 #include <queue>
50 
51 #include "arch/utility.hh"
52 #include "config/the_isa.hh"
53 #include "cpu/checker/cpu.hh"
54 #include "cpu/o3/fu_pool.hh"
55 #include "cpu/o3/iew.hh"
56 #include "cpu/timebuf.hh"
57 #include "debug/Activity.hh"
58 #include "debug/Drain.hh"
59 #include "debug/IEW.hh"
60 #include "debug/O3PipeView.hh"
61 #include "params/DerivO3CPU.hh"
62 
63 using namespace std;
64 
65 template<class Impl>
66 DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
67  : issueToExecQueue(params->backComSize, params->forwardComSize),
68  cpu(_cpu),
69  instQueue(_cpu, this, params),
70  ldstQueue(_cpu, this, params),
71  fuPool(params->fuPool),
72  commitToIEWDelay(params->commitToIEWDelay),
73  renameToIEWDelay(params->renameToIEWDelay),
74  issueToExecuteDelay(params->issueToExecuteDelay),
75  dispatchWidth(params->dispatchWidth),
76  issueWidth(params->issueWidth),
77  wbNumInst(0),
78  wbCycle(0),
79  wbWidth(params->wbWidth),
80  numThreads(params->numThreads)
81 {
82  if (dispatchWidth > Impl::MaxWidth)
83  fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
84  "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
85  dispatchWidth, static_cast<int>(Impl::MaxWidth));
86  if (issueWidth > Impl::MaxWidth)
87  fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
88  "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
89  issueWidth, static_cast<int>(Impl::MaxWidth));
90  if (wbWidth > Impl::MaxWidth)
91  fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
92  "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
93  wbWidth, static_cast<int>(Impl::MaxWidth));
94 
95  _status = Active;
97  wbStatus = Idle;
98 
99  // Setup wire to read instructions coming from issue.
101 
102  // Instruction queue needs the queue between issue and execute.
103  instQueue.setIssueToExecuteQueue(&issueToExecQueue);
104 
105  for (ThreadID tid = 0; tid < Impl::MaxThreads; tid++) {
106  dispatchStatus[tid] = Running;
107  fetchRedirect[tid] = false;
108  }
109 
110  updateLSQNextCycle = false;
111 
112  skidBufferMax = (renameToIEWDelay + 1) * params->renameWidth;
113 }
114 
115 template <class Impl>
116 std::string
118 {
119  return cpu->name() + ".iew";
120 }
121 
122 template <class Impl>
123 void
125 {
126  ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
127  ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
132  ppExecute = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
133  "Execute");
138  ppToCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
139  "ToCommit");
140 }
141 
142 template <class Impl>
143 void
145 {
146  using namespace Stats;
147 
148  instQueue.regStats();
150 
152  .name(name() + ".iewIdleCycles")
153  .desc("Number of cycles IEW is idle");
154 
156  .name(name() + ".iewSquashCycles")
157  .desc("Number of cycles IEW is squashing");
158 
160  .name(name() + ".iewBlockCycles")
161  .desc("Number of cycles IEW is blocking");
162 
164  .name(name() + ".iewUnblockCycles")
165  .desc("Number of cycles IEW is unblocking");
166 
168  .name(name() + ".iewDispatchedInsts")
169  .desc("Number of instructions dispatched to IQ");
170 
172  .name(name() + ".iewDispSquashedInsts")
173  .desc("Number of squashed instructions skipped by dispatch");
174 
176  .name(name() + ".iewDispLoadInsts")
177  .desc("Number of dispatched load instructions");
178 
180  .name(name() + ".iewDispStoreInsts")
181  .desc("Number of dispatched store instructions");
182 
184  .name(name() + ".iewDispNonSpecInsts")
185  .desc("Number of dispatched non-speculative instructions");
186 
188  .name(name() + ".iewIQFullEvents")
189  .desc("Number of times the IQ has become full, causing a stall");
190 
192  .name(name() + ".iewLSQFullEvents")
193  .desc("Number of times the LSQ has become full, causing a stall");
194 
196  .name(name() + ".memOrderViolationEvents")
197  .desc("Number of memory order violations");
198 
200  .name(name() + ".predictedTakenIncorrect")
201  .desc("Number of branches that were predicted taken incorrectly");
202 
204  .name(name() + ".predictedNotTakenIncorrect")
205  .desc("Number of branches that were predicted not taken incorrectly");
206 
208  .name(name() + ".branchMispredicts")
209  .desc("Number of branch mispredicts detected at execute");
210 
212 
214  .name(name() + ".iewExecutedInsts")
215  .desc("Number of executed instructions");
216 
218  .init(cpu->numThreads)
219  .name(name() + ".iewExecLoadInsts")
220  .desc("Number of load instructions executed")
221  .flags(total);
222 
224  .name(name() + ".iewExecSquashedInsts")
225  .desc("Number of squashed instructions skipped in execute");
226 
228  .init(cpu->numThreads)
229  .name(name() + ".exec_swp")
230  .desc("number of swp insts executed")
231  .flags(total);
232 
234  .init(cpu->numThreads)
235  .name(name() + ".exec_nop")
236  .desc("number of nop insts executed")
237  .flags(total);
238 
240  .init(cpu->numThreads)
241  .name(name() + ".exec_refs")
242  .desc("number of memory reference insts executed")
243  .flags(total);
244 
246  .init(cpu->numThreads)
247  .name(name() + ".exec_branches")
248  .desc("Number of branches executed")
249  .flags(total);
250 
252  .name(name() + ".exec_stores")
253  .desc("Number of stores executed")
254  .flags(total);
256 
258  .name(name() + ".exec_rate")
259  .desc("Inst execution rate")
260  .flags(total);
261 
262  iewExecRate = iewExecutedInsts / cpu->numCycles;
263 
265  .init(cpu->numThreads)
266  .name(name() + ".wb_sent")
267  .desc("cumulative count of insts sent to commit")
268  .flags(total);
269 
271  .init(cpu->numThreads)
272  .name(name() + ".wb_count")
273  .desc("cumulative count of insts written-back")
274  .flags(total);
275 
277  .init(cpu->numThreads)
278  .name(name() + ".wb_producers")
279  .desc("num instructions producing a value")
280  .flags(total);
281 
283  .init(cpu->numThreads)
284  .name(name() + ".wb_consumers")
285  .desc("num instructions consuming a value")
286  .flags(total);
287 
288  wbFanout
289  .name(name() + ".wb_fanout")
290  .desc("average fanout of values written-back")
291  .flags(total);
292 
294 
295  wbRate
296  .name(name() + ".wb_rate")
297  .desc("insts written-back per cycle")
298  .flags(total);
299  wbRate = writebackCount / cpu->numCycles;
300 }
301 
302 template<class Impl>
303 void
305 {
306  for (ThreadID tid = 0; tid < numThreads; tid++) {
307  toRename->iewInfo[tid].usedIQ = true;
308  toRename->iewInfo[tid].freeIQEntries =
309  instQueue.numFreeEntries(tid);
310 
311  toRename->iewInfo[tid].usedLSQ = true;
312  toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
313  toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
314  }
315 
316  // Initialize the checker's dcache port here
317  if (cpu->checker) {
318  cpu->checker->setDcachePort(&ldstQueue.getDataPort());
319  }
320 
321  cpu->activateStage(O3CPU::IEWIdx);
322 }
323 
324 template<class Impl>
325 void
327 {
328  toRename->iewInfo[tid].usedIQ = true;
329  toRename->iewInfo[tid].freeIQEntries =
330  instQueue.numFreeEntries(tid);
331 
332  toRename->iewInfo[tid].usedLSQ = true;
333  toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
334  toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
335 }
336 
337 template<class Impl>
338 void
340 {
341  timeBuffer = tb_ptr;
342 
343  // Setup wire to read information from time buffer, from commit.
345 
346  // Setup wire to write information back to previous stages.
348 
349  toFetch = timeBuffer->getWire(0);
350 
351  // Instruction queue also needs main time buffer.
352  instQueue.setTimeBuffer(tb_ptr);
353 }
354 
355 template<class Impl>
356 void
358 {
359  renameQueue = rq_ptr;
360 
361  // Setup wire to read information from rename queue.
363 }
364 
365 template<class Impl>
366 void
368 {
369  iewQueue = iq_ptr;
370 
371  // Setup wire to write instructions to commit.
372  toCommit = iewQueue->getWire(0);
373 }
374 
375 template<class Impl>
376 void
378 {
379  activeThreads = at_ptr;
380 
381  ldstQueue.setActiveThreads(at_ptr);
382  instQueue.setActiveThreads(at_ptr);
383 }
384 
385 template<class Impl>
386 void
388 {
389  scoreboard = sb_ptr;
390 }
391 
392 template <class Impl>
393 bool
395 {
396  bool drained = ldstQueue.isDrained() && instQueue.isDrained();
397 
398  for (ThreadID tid = 0; tid < numThreads; tid++) {
399  if (!insts[tid].empty()) {
400  DPRINTF(Drain, "%i: Insts not empty.\n", tid);
401  drained = false;
402  }
403  if (!skidBuffer[tid].empty()) {
404  DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
405  drained = false;
406  }
407  drained = drained && dispatchStatus[tid] == Running;
408  }
409 
410  // Also check the FU pool as instructions are "stored" in FU
411  // completion events until they are done and not accounted for
412  // above
413  if (drained && !fuPool->isDrained()) {
414  DPRINTF(Drain, "FU pool still busy.\n");
415  drained = false;
416  }
417 
418  return drained;
419 }
420 
421 template <class Impl>
422 void
424 {
425  assert(isDrained());
426 
427  instQueue.drainSanityCheck();
429 }
430 
431 template <class Impl>
432 void
434 {
435  // Reset all state.
436  _status = Active;
437  exeStatus = Running;
438  wbStatus = Idle;
439 
440  instQueue.takeOverFrom();
442  fuPool->takeOverFrom();
443 
444  startupStage();
445  cpu->activityThisCycle();
446 
447  for (ThreadID tid = 0; tid < numThreads; tid++) {
448  dispatchStatus[tid] = Running;
449  fetchRedirect[tid] = false;
450  }
451 
452  updateLSQNextCycle = false;
453 
454  for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
456  }
457 }
458 
459 template<class Impl>
460 void
462 {
463  DPRINTF(IEW, "[tid:%i] Squashing all instructions.\n", tid);
464 
465  // Tell the IQ to start squashing.
466  instQueue.squash(tid);
467 
468  // Tell the LDSTQ to start squashing.
469  ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
470  updatedQueues = true;
471 
472  // Clear the skid buffer in case it has any data in it.
473  DPRINTF(IEW,
474  "Removing skidbuffer instructions until "
475  "[sn:%llu] [tid:%i]\n",
476  fromCommit->commitInfo[tid].doneSeqNum, tid);
477 
478  while (!skidBuffer[tid].empty()) {
479  if (skidBuffer[tid].front()->isLoad()) {
480  toRename->iewInfo[tid].dispatchedToLQ++;
481  }
482  if (skidBuffer[tid].front()->isStore() ||
483  skidBuffer[tid].front()->isAtomic()) {
484  toRename->iewInfo[tid].dispatchedToSQ++;
485  }
486 
487  toRename->iewInfo[tid].dispatched++;
488 
489  skidBuffer[tid].pop();
490  }
491 
492  emptyRenameInsts(tid);
493 }
494 
495 template<class Impl>
496 void
498 {
499  DPRINTF(IEW, "[tid:%i] [sn:%llu] Squashing from a specific instruction,"
500  " PC: %s "
501  "\n", tid, inst->seqNum, inst->pcState() );
502 
503  if (!toCommit->squash[tid] ||
504  inst->seqNum < toCommit->squashedSeqNum[tid]) {
505  toCommit->squash[tid] = true;
506  toCommit->squashedSeqNum[tid] = inst->seqNum;
507  toCommit->branchTaken[tid] = inst->pcState().branching();
508 
509  TheISA::PCState pc = inst->pcState();
510  TheISA::advancePC(pc, inst->staticInst);
511 
512  toCommit->pc[tid] = pc;
513  toCommit->mispredictInst[tid] = inst;
514  toCommit->includeSquashInst[tid] = false;
515 
516  wroteToTimeBuffer = true;
517  }
518 
519 }
520 
521 template<class Impl>
522 void
524 {
525  DPRINTF(IEW, "[tid:%i] Memory violation, squashing violator and younger "
526  "insts, PC: %s [sn:%llu].\n", tid, inst->pcState(), inst->seqNum);
527  // Need to include inst->seqNum in the following comparison to cover the
528  // corner case when a branch misprediction and a memory violation for the
529  // same instruction (e.g. load PC) are detected in the same cycle. In this
530  // case the memory violator should take precedence over the branch
531  // misprediction because it requires the violator itself to be included in
532  // the squash.
533  if (!toCommit->squash[tid] ||
534  inst->seqNum <= toCommit->squashedSeqNum[tid]) {
535  toCommit->squash[tid] = true;
536 
537  toCommit->squashedSeqNum[tid] = inst->seqNum;
538  toCommit->pc[tid] = inst->pcState();
539  toCommit->mispredictInst[tid] = NULL;
540 
541  // Must include the memory violator in the squash.
542  toCommit->includeSquashInst[tid] = true;
543 
544  wroteToTimeBuffer = true;
545  }
546 }
547 
548 template<class Impl>
549 void
551 {
552  DPRINTF(IEW, "[tid:%i] Blocking.\n", tid);
553 
554  if (dispatchStatus[tid] != Blocked &&
555  dispatchStatus[tid] != Unblocking) {
556  toRename->iewBlock[tid] = true;
557  wroteToTimeBuffer = true;
558  }
559 
560  // Add the current inputs to the skid buffer so they can be
561  // reprocessed when this stage unblocks.
562  skidInsert(tid);
563 
564  dispatchStatus[tid] = Blocked;
565 }
566 
567 template<class Impl>
568 void
570 {
571  DPRINTF(IEW, "[tid:%i] Reading instructions out of the skid "
572  "buffer %u.\n",tid, tid);
573 
574  // If the skid bufffer is empty, signal back to previous stages to unblock.
575  // Also switch status to running.
576  if (skidBuffer[tid].empty()) {
577  toRename->iewUnblock[tid] = true;
578  wroteToTimeBuffer = true;
579  DPRINTF(IEW, "[tid:%i] Done unblocking.\n",tid);
580  dispatchStatus[tid] = Running;
581  }
582 }
583 
584 template<class Impl>
585 void
587 {
588  instQueue.wakeDependents(inst);
589 }
590 
591 template<class Impl>
592 void
594 {
595  instQueue.rescheduleMemInst(inst);
596 }
597 
598 template<class Impl>
599 void
601 {
602  instQueue.replayMemInst(inst);
603 }
604 
605 template<class Impl>
606 void
608 {
609  instQueue.blockMemInst(inst);
610 }
611 
612 template<class Impl>
613 void
615 {
616  instQueue.cacheUnblocked();
617 }
618 
619 template<class Impl>
620 void
622 {
623  // This function should not be called after writebackInsts in a
624  // single cycle. That will cause problems with an instruction
625  // being added to the queue to commit without being processed by
626  // writebackInsts prior to being sent to commit.
627 
628  // First check the time slot that this instruction will write
629  // to. If there are free write ports at the time, then go ahead
630  // and write the instruction to that time. If there are not,
631  // keep looking back to see where's the first time there's a
632  // free slot.
633  while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
634  ++wbNumInst;
635  if (wbNumInst == wbWidth) {
636  ++wbCycle;
637  wbNumInst = 0;
638  }
639  }
640 
641  DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
642  wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
643  // Add finished instruction to queue to commit.
644  (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
645  (*iewQueue)[wbCycle].size++;
646 }
647 
648 template <class Impl>
649 unsigned
651 {
652  unsigned inst_count = 0;
653 
654  for (int i=0; i<fromRename->size; i++) {
655  if (!fromRename->insts[i]->isSquashed())
656  inst_count++;
657  }
658 
659  return inst_count;
660 }
661 
662 template<class Impl>
663 void
665 {
666  DynInstPtr inst = NULL;
667 
668  while (!insts[tid].empty()) {
669  inst = insts[tid].front();
670 
671  insts[tid].pop();
672 
673  DPRINTF(IEW,"[tid:%i] Inserting [sn:%lli] PC:%s into "
674  "dispatch skidBuffer %i\n",tid, inst->seqNum,
675  inst->pcState(),tid);
676 
677  skidBuffer[tid].push(inst);
678  }
679 
680  assert(skidBuffer[tid].size() <= skidBufferMax &&
681  "Skidbuffer Exceeded Max Size");
682 }
683 
684 template<class Impl>
685 int
687 {
688  int max=0;
689 
690  list<ThreadID>::iterator threads = activeThreads->begin();
692 
693  while (threads != end) {
694  ThreadID tid = *threads++;
695  unsigned thread_count = skidBuffer[tid].size();
696  if (max < thread_count)
697  max = thread_count;
698  }
699 
700  return max;
701 }
702 
703 template<class Impl>
704 bool
706 {
707  list<ThreadID>::iterator threads = activeThreads->begin();
709 
710  while (threads != end) {
711  ThreadID tid = *threads++;
712 
713  if (!skidBuffer[tid].empty())
714  return false;
715  }
716 
717  return true;
718 }
719 
720 template <class Impl>
721 void
723 {
724  bool any_unblocking = false;
725 
726  list<ThreadID>::iterator threads = activeThreads->begin();
728 
729  while (threads != end) {
730  ThreadID tid = *threads++;
731 
732  if (dispatchStatus[tid] == Unblocking) {
733  any_unblocking = true;
734  break;
735  }
736  }
737 
738  // If there are no ready instructions waiting to be scheduled by the IQ,
739  // and there's no stores waiting to write back, and dispatch is not
740  // unblocking, then there is no internal activity for the IEW stage.
741  instQueue.intInstQueueReads++;
742  if (_status == Active && !instQueue.hasReadyInsts() &&
743  !ldstQueue.willWB() && !any_unblocking) {
744  DPRINTF(IEW, "IEW switching to idle\n");
745 
746  deactivateStage();
747 
748  _status = Inactive;
749  } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
750  ldstQueue.willWB() ||
751  any_unblocking)) {
752  // Otherwise there is internal activity. Set to active.
753  DPRINTF(IEW, "IEW switching to active\n");
754 
755  activateStage();
756 
757  _status = Active;
758  }
759 }
760 
761 template <class Impl>
762 bool
764 {
765  bool ret_val(false);
766 
767  if (fromCommit->commitInfo[tid].robSquashing) {
768  DPRINTF(IEW,"[tid:%i] Stall from Commit stage detected.\n",tid);
769  ret_val = true;
770  } else if (instQueue.isFull(tid)) {
771  DPRINTF(IEW,"[tid:%i] Stall: IQ is full.\n",tid);
772  ret_val = true;
773  }
774 
775  return ret_val;
776 }
777 
778 template <class Impl>
779 void
781 {
782  // Check if there's a squash signal, squash if there is
783  // Check stall signals, block if there is.
784  // If status was Blocked
785  // if so then go to unblocking
786  // If status was Squashing
787  // check if squashing is not high. Switch to running this cycle.
788 
789  if (fromCommit->commitInfo[tid].squash) {
790  squash(tid);
791 
792  if (dispatchStatus[tid] == Blocked ||
793  dispatchStatus[tid] == Unblocking) {
794  toRename->iewUnblock[tid] = true;
795  wroteToTimeBuffer = true;
796  }
797 
798  dispatchStatus[tid] = Squashing;
799  fetchRedirect[tid] = false;
800  return;
801  }
802 
803  if (fromCommit->commitInfo[tid].robSquashing) {
804  DPRINTF(IEW, "[tid:%i] ROB is still squashing.\n", tid);
805 
806  dispatchStatus[tid] = Squashing;
807  emptyRenameInsts(tid);
808  wroteToTimeBuffer = true;
809  }
810 
811  if (checkStall(tid)) {
812  block(tid);
813  dispatchStatus[tid] = Blocked;
814  return;
815  }
816 
817  if (dispatchStatus[tid] == Blocked) {
818  // Status from previous cycle was blocked, but there are no more stall
819  // conditions. Switch over to unblocking.
820  DPRINTF(IEW, "[tid:%i] Done blocking, switching to unblocking.\n",
821  tid);
822 
823  dispatchStatus[tid] = Unblocking;
824 
825  unblock(tid);
826 
827  return;
828  }
829 
830  if (dispatchStatus[tid] == Squashing) {
831  // Switch status to running if rename isn't being told to block or
832  // squash this cycle.
833  DPRINTF(IEW, "[tid:%i] Done squashing, switching to running.\n",
834  tid);
835 
836  dispatchStatus[tid] = Running;
837 
838  return;
839  }
840 }
841 
842 template <class Impl>
843 void
845 {
846  int insts_from_rename = fromRename->size;
847 #ifdef DEBUG
848  for (ThreadID tid = 0; tid < numThreads; tid++)
849  assert(insts[tid].empty());
850 #endif
851  for (int i = 0; i < insts_from_rename; ++i) {
852  insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
853  }
854 }
855 
856 template <class Impl>
857 void
859 {
860  DPRINTF(IEW, "[tid:%i] Removing incoming rename instructions\n", tid);
861 
862  while (!insts[tid].empty()) {
863 
864  if (insts[tid].front()->isLoad()) {
865  toRename->iewInfo[tid].dispatchedToLQ++;
866  }
867  if (insts[tid].front()->isStore() ||
868  insts[tid].front()->isAtomic()) {
869  toRename->iewInfo[tid].dispatchedToSQ++;
870  }
871 
872  toRename->iewInfo[tid].dispatched++;
873 
874  insts[tid].pop();
875  }
876 }
877 
878 template <class Impl>
879 void
881 {
882  cpu->wakeCPU();
883 }
884 
885 template <class Impl>
886 void
888 {
889  DPRINTF(Activity, "Activity this cycle.\n");
890  cpu->activityThisCycle();
891 }
892 
893 template <class Impl>
894 inline void
896 {
897  DPRINTF(Activity, "Activating stage.\n");
898  cpu->activateStage(O3CPU::IEWIdx);
899 }
900 
901 template <class Impl>
902 inline void
904 {
905  DPRINTF(Activity, "Deactivating stage.\n");
906  cpu->deactivateStage(O3CPU::IEWIdx);
907 }
908 
909 template<class Impl>
910 void
912 {
913  // If status is Running or idle,
914  // call dispatchInsts()
915  // If status is Unblocking,
916  // buffer any instructions coming from rename
917  // continue trying to empty skid buffer
918  // check if stall conditions have passed
919 
920  if (dispatchStatus[tid] == Blocked) {
921  ++iewBlockCycles;
922 
923  } else if (dispatchStatus[tid] == Squashing) {
924  ++iewSquashCycles;
925  }
926 
927  // Dispatch should try to dispatch as many instructions as its bandwidth
928  // will allow, as long as it is not currently blocked.
929  if (dispatchStatus[tid] == Running ||
930  dispatchStatus[tid] == Idle) {
931  DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
932  "dispatch.\n", tid);
933 
934  dispatchInsts(tid);
935  } else if (dispatchStatus[tid] == Unblocking) {
936  // Make sure that the skid buffer has something in it if the
937  // status is unblocking.
938  assert(!skidsEmpty());
939 
940  // If the status was unblocking, then instructions from the skid
941  // buffer were used. Remove those instructions and handle
942  // the rest of unblocking.
943  dispatchInsts(tid);
944 
946 
947  if (validInstsFromRename()) {
948  // Add the current inputs to the skid buffer so they can be
949  // reprocessed when this stage unblocks.
950  skidInsert(tid);
951  }
952 
953  unblock(tid);
954  }
955 }
956 
957 template <class Impl>
958 void
960 {
961  // Obtain instructions from skid buffer if unblocking, or queue from rename
962  // otherwise.
963  std::queue<DynInstPtr> &insts_to_dispatch =
964  dispatchStatus[tid] == Unblocking ?
965  skidBuffer[tid] : insts[tid];
966 
967  int insts_to_add = insts_to_dispatch.size();
968 
969  DynInstPtr inst;
970  bool add_to_iq = false;
971  int dis_num_inst = 0;
972 
973  // Loop through the instructions, putting them in the instruction
974  // queue.
975  for ( ; dis_num_inst < insts_to_add &&
976  dis_num_inst < dispatchWidth;
977  ++dis_num_inst)
978  {
979  inst = insts_to_dispatch.front();
980 
981  if (dispatchStatus[tid] == Unblocking) {
982  DPRINTF(IEW, "[tid:%i] Issue: Examining instruction from skid "
983  "buffer\n", tid);
984  }
985 
986  // Make sure there's a valid instruction there.
987  assert(inst);
988 
989  DPRINTF(IEW, "[tid:%i] Issue: Adding PC %s [sn:%lli] [tid:%i] to "
990  "IQ.\n",
991  tid, inst->pcState(), inst->seqNum, inst->threadNumber);
992 
993  // Be sure to mark these instructions as ready so that the
994  // commit stage can go ahead and execute them, and mark
995  // them as issued so the IQ doesn't reprocess them.
996 
997  // Check for squashed instructions.
998  if (inst->isSquashed()) {
999  DPRINTF(IEW, "[tid:%i] Issue: Squashed instruction encountered, "
1000  "not adding to IQ.\n", tid);
1001 
1003 
1004  insts_to_dispatch.pop();
1005 
1006  //Tell Rename That An Instruction has been processed
1007  if (inst->isLoad()) {
1008  toRename->iewInfo[tid].dispatchedToLQ++;
1009  }
1010  if (inst->isStore() || inst->isAtomic()) {
1011  toRename->iewInfo[tid].dispatchedToSQ++;
1012  }
1013 
1014  toRename->iewInfo[tid].dispatched++;
1015 
1016  continue;
1017  }
1018 
1019  // Check for full conditions.
1020  if (instQueue.isFull(tid)) {
1021  DPRINTF(IEW, "[tid:%i] Issue: IQ has become full.\n", tid);
1022 
1023  // Call function to start blocking.
1024  block(tid);
1025 
1026  // Set unblock to false. Special case where we are using
1027  // skidbuffer (unblocking) instructions but then we still
1028  // get full in the IQ.
1029  toRename->iewUnblock[tid] = false;
1030 
1031  ++iewIQFullEvents;
1032  break;
1033  }
1034 
1035  // Check LSQ if inst is LD/ST
1036  if ((inst->isAtomic() && ldstQueue.sqFull(tid)) ||
1037  (inst->isLoad() && ldstQueue.lqFull(tid)) ||
1038  (inst->isStore() && ldstQueue.sqFull(tid))) {
1039  DPRINTF(IEW, "[tid:%i] Issue: %s has become full.\n",tid,
1040  inst->isLoad() ? "LQ" : "SQ");
1041 
1042  // Call function to start blocking.
1043  block(tid);
1044 
1045  // Set unblock to false. Special case where we are using
1046  // skidbuffer (unblocking) instructions but then we still
1047  // get full in the IQ.
1048  toRename->iewUnblock[tid] = false;
1049 
1050  ++iewLSQFullEvents;
1051  break;
1052  }
1053 
1054  // Otherwise issue the instruction just fine.
1055  if (inst->isAtomic()) {
1056  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1057  "encountered, adding to LSQ.\n", tid);
1058 
1059  ldstQueue.insertStore(inst);
1060 
1062 
1063  // AMOs need to be set as "canCommit()"
1064  // so that commit can process them when they reach the
1065  // head of commit.
1066  inst->setCanCommit();
1067  instQueue.insertNonSpec(inst);
1068  add_to_iq = false;
1069 
1071 
1072  toRename->iewInfo[tid].dispatchedToSQ++;
1073  } else if (inst->isLoad()) {
1074  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1075  "encountered, adding to LSQ.\n", tid);
1076 
1077  // Reserve a spot in the load store queue for this
1078  // memory access.
1079  ldstQueue.insertLoad(inst);
1080 
1081  ++iewDispLoadInsts;
1082 
1083  add_to_iq = true;
1084 
1085  toRename->iewInfo[tid].dispatchedToLQ++;
1086  } else if (inst->isStore()) {
1087  DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1088  "encountered, adding to LSQ.\n", tid);
1089 
1090  ldstQueue.insertStore(inst);
1091 
1093 
1094  if (inst->isStoreConditional()) {
1095  // Store conditionals need to be set as "canCommit()"
1096  // so that commit can process them when they reach the
1097  // head of commit.
1098  // @todo: This is somewhat specific to Alpha.
1099  inst->setCanCommit();
1100  instQueue.insertNonSpec(inst);
1101  add_to_iq = false;
1102 
1104  } else {
1105  add_to_iq = true;
1106  }
1107 
1108  toRename->iewInfo[tid].dispatchedToSQ++;
1109  } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1110  // Same as non-speculative stores.
1111  inst->setCanCommit();
1112  instQueue.insertBarrier(inst);
1113  add_to_iq = false;
1114  } else if (inst->isNop()) {
1115  DPRINTF(IEW, "[tid:%i] Issue: Nop instruction encountered, "
1116  "skipping.\n", tid);
1117 
1118  inst->setIssued();
1119  inst->setExecuted();
1120  inst->setCanCommit();
1121 
1122  instQueue.recordProducer(inst);
1123 
1124  iewExecutedNop[tid]++;
1125 
1126  add_to_iq = false;
1127  } else {
1128  assert(!inst->isExecuted());
1129  add_to_iq = true;
1130  }
1131 
1132  if (add_to_iq && inst->isNonSpeculative()) {
1133  DPRINTF(IEW, "[tid:%i] Issue: Nonspeculative instruction "
1134  "encountered, skipping.\n", tid);
1135 
1136  // Same as non-speculative stores.
1137  inst->setCanCommit();
1138 
1139  // Specifically insert it as nonspeculative.
1140  instQueue.insertNonSpec(inst);
1141 
1143 
1144  add_to_iq = false;
1145  }
1146 
1147  // If the instruction queue is not full, then add the
1148  // instruction.
1149  if (add_to_iq) {
1150  instQueue.insert(inst);
1151  }
1152 
1153  insts_to_dispatch.pop();
1154 
1155  toRename->iewInfo[tid].dispatched++;
1156 
1158 
1159 #if TRACING_ON
1160  inst->dispatchTick = curTick() - inst->fetchTick;
1161 #endif
1162  ppDispatch->notify(inst);
1163  }
1164 
1165  if (!insts_to_dispatch.empty()) {
1166  DPRINTF(IEW,"[tid:%i] Issue: Bandwidth Full. Blocking.\n", tid);
1167  block(tid);
1168  toRename->iewUnblock[tid] = false;
1169  }
1170 
1171  if (dispatchStatus[tid] == Idle && dis_num_inst) {
1172  dispatchStatus[tid] = Running;
1173 
1174  updatedQueues = true;
1175  }
1176 
1177  dis_num_inst = 0;
1178 }
1179 
1180 template <class Impl>
1181 void
1183 {
1184  int inst = 0;
1185 
1186  std::cout << "Available Instructions: ";
1187 
1188  while (fromIssue->insts[inst]) {
1189 
1190  if (inst%3==0) std::cout << "\n\t";
1191 
1192  std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1193  << " TN: " << fromIssue->insts[inst]->threadNumber
1194  << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1195 
1196  inst++;
1197 
1198  }
1199 
1200  std::cout << "\n";
1201 }
1202 
1203 template <class Impl>
1204 void
1206 {
1207  wbNumInst = 0;
1208  wbCycle = 0;
1209 
1210  list<ThreadID>::iterator threads = activeThreads->begin();
1212 
1213  while (threads != end) {
1214  ThreadID tid = *threads++;
1215  fetchRedirect[tid] = false;
1216  }
1217 
1218  // Uncomment this if you want to see all available instructions.
1219  // @todo This doesn't actually work anymore, we should fix it.
1220 // printAvailableInsts();
1221 
1222  // Execute/writeback any instructions that are available.
1223  int insts_to_execute = fromIssue->size;
1224  int inst_num = 0;
1225  for (; inst_num < insts_to_execute;
1226  ++inst_num) {
1227 
1228  DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1229 
1230  DynInstPtr inst = instQueue.getInstToExecute();
1231 
1232  DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%llu].\n",
1233  inst->pcState(), inst->threadNumber,inst->seqNum);
1234 
1235  // Notify potential listeners that this instruction has started
1236  // executing
1237  ppExecute->notify(inst);
1238 
1239  // Check if the instruction is squashed; if so then skip it
1240  if (inst->isSquashed()) {
1241  DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1242  " [sn:%llu]\n", inst->pcState(), inst->threadNumber,
1243  inst->seqNum);
1244 
1245  // Consider this instruction executed so that commit can go
1246  // ahead and retire the instruction.
1247  inst->setExecuted();
1248 
1249  // Not sure if I should set this here or just let commit try to
1250  // commit any squashed instructions. I like the latter a bit more.
1251  inst->setCanCommit();
1252 
1254 
1255  continue;
1256  }
1257 
1258  Fault fault = NoFault;
1259 
1260  // Execute instruction.
1261  // Note that if the instruction faults, it will be handled
1262  // at the commit stage.
1263  if (inst->isMemRef()) {
1264  DPRINTF(IEW, "Execute: Calculating address for memory "
1265  "reference.\n");
1266 
1267  // Tell the LDSTQ to execute this instruction (if it is a load).
1268  if (inst->isAtomic()) {
1269  // AMOs are treated like store requests
1270  fault = ldstQueue.executeStore(inst);
1271 
1272  if (inst->isTranslationDelayed() &&
1273  fault == NoFault) {
1274  // A hw page table walk is currently going on; the
1275  // instruction must be deferred.
1276  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1277  "store.\n");
1278  instQueue.deferMemInst(inst);
1279  continue;
1280  }
1281  } else if (inst->isLoad()) {
1282  // Loads will mark themselves as executed, and their writeback
1283  // event adds the instruction to the queue to commit
1284  fault = ldstQueue.executeLoad(inst);
1285 
1286  if (inst->isTranslationDelayed() &&
1287  fault == NoFault) {
1288  // A hw page table walk is currently going on; the
1289  // instruction must be deferred.
1290  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1291  "load.\n");
1292  instQueue.deferMemInst(inst);
1293  continue;
1294  }
1295 
1296  if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1297  inst->fault = NoFault;
1298  }
1299  } else if (inst->isStore()) {
1300  fault = ldstQueue.executeStore(inst);
1301 
1302  if (inst->isTranslationDelayed() &&
1303  fault == NoFault) {
1304  // A hw page table walk is currently going on; the
1305  // instruction must be deferred.
1306  DPRINTF(IEW, "Execute: Delayed translation, deferring "
1307  "store.\n");
1308  instQueue.deferMemInst(inst);
1309  continue;
1310  }
1311 
1312  // If the store had a fault then it may not have a mem req
1313  if (fault != NoFault || !inst->readPredicate() ||
1314  !inst->isStoreConditional()) {
1315  // If the instruction faulted, then we need to send it along
1316  // to commit without the instruction completing.
1317  // Send this instruction to commit, also make sure iew stage
1318  // realizes there is activity.
1319  inst->setExecuted();
1320  instToCommit(inst);
1322  }
1323 
1324  // Store conditionals will mark themselves as
1325  // executed, and their writeback event will add the
1326  // instruction to the queue to commit.
1327  } else {
1328  panic("Unexpected memory type!\n");
1329  }
1330 
1331  } else {
1332  // If the instruction has already faulted, then skip executing it.
1333  // Such case can happen when it faulted during ITLB translation.
1334  // If we execute the instruction (even if it's a nop) the fault
1335  // will be replaced and we will lose it.
1336  if (inst->getFault() == NoFault) {
1337  inst->execute();
1338  if (!inst->readPredicate())
1339  inst->forwardOldRegs();
1340  }
1341 
1342  inst->setExecuted();
1343 
1344  instToCommit(inst);
1345  }
1346 
1347  updateExeInstStats(inst);
1348 
1349  // Check if branch prediction was correct, if not then we need
1350  // to tell commit to squash in flight instructions. Only
1351  // handle this if there hasn't already been something that
1352  // redirects fetch in this group of instructions.
1353 
1354  // This probably needs to prioritize the redirects if a different
1355  // scheduler is used. Currently the scheduler schedules the oldest
1356  // instruction first, so the branch resolution order will be correct.
1357  ThreadID tid = inst->threadNumber;
1358 
1359  if (!fetchRedirect[tid] ||
1360  !toCommit->squash[tid] ||
1361  toCommit->squashedSeqNum[tid] > inst->seqNum) {
1362 
1363  // Prevent testing for misprediction on load instructions,
1364  // that have not been executed.
1365  bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1366 
1367  if (inst->mispredicted() && !loadNotExecuted) {
1368  fetchRedirect[tid] = true;
1369 
1370  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1371  "Branch mispredict detected.\n",
1372  tid,inst->seqNum);
1373  DPRINTF(IEW, "[tid:%i] [sn:%llu] "
1374  "Predicted target was PC: %s\n",
1375  tid,inst->seqNum,inst->readPredTarg());
1376  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1377  "Redirecting fetch to PC: %s\n",
1378  tid,inst->seqNum,inst->pcState());
1379  // If incorrect, then signal the ROB that it must be squashed.
1380  squashDueToBranch(inst, tid);
1381 
1382  ppMispredict->notify(inst);
1383 
1384  if (inst->readPredTaken()) {
1386  } else {
1388  }
1389  } else if (ldstQueue.violation(tid)) {
1390  assert(inst->isMemRef());
1391  // If there was an ordering violation, then get the
1392  // DynInst that caused the violation. Note that this
1393  // clears the violation signal.
1394  DynInstPtr violator;
1395  violator = ldstQueue.getMemDepViolator(tid);
1396 
1397  DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1398  "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1399  violator->pcState(), violator->seqNum,
1400  inst->pcState(), inst->seqNum, inst->physEffAddr);
1401 
1402  fetchRedirect[tid] = true;
1403 
1404  // Tell the instruction queue that a violation has occured.
1405  instQueue.violation(inst, violator);
1406 
1407  // Squash.
1408  squashDueToMemOrder(violator, tid);
1409 
1411  }
1412  } else {
1413  // Reset any state associated with redirects that will not
1414  // be used.
1415  if (ldstQueue.violation(tid)) {
1416  assert(inst->isMemRef());
1417 
1418  DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1419 
1420  DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1421  "%s, inst PC: %s. Addr is: %#x.\n",
1422  violator->pcState(), inst->pcState(),
1423  inst->physEffAddr);
1424  DPRINTF(IEW, "Violation will not be handled because "
1425  "already squashing\n");
1426 
1428  }
1429  }
1430  }
1431 
1432  // Update and record activity if we processed any instructions.
1433  if (inst_num) {
1434  if (exeStatus == Idle) {
1435  exeStatus = Running;
1436  }
1437 
1438  updatedQueues = true;
1439 
1440  cpu->activityThisCycle();
1441  }
1442 
1443  // Need to reset this in case a writeback event needs to write into the
1444  // iew queue. That way the writeback event will write into the correct
1445  // spot in the queue.
1446  wbNumInst = 0;
1447 
1448 }
1449 
1450 template <class Impl>
1451 void
1453 {
1454  // Loop through the head of the time buffer and wake any
1455  // dependents. These instructions are about to write back. Also
1456  // mark scoreboard that this instruction is finally complete.
1457  // Either have IEW have direct access to scoreboard, or have this
1458  // as part of backwards communication.
1459  for (int inst_num = 0; inst_num < wbWidth &&
1460  toCommit->insts[inst_num]; inst_num++) {
1461  DynInstPtr inst = toCommit->insts[inst_num];
1462  ThreadID tid = inst->threadNumber;
1463 
1464  DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1465  inst->seqNum, inst->pcState());
1466 
1467  iewInstsToCommit[tid]++;
1468  // Notify potential listeners that execution is complete for this
1469  // instruction.
1470  ppToCommit->notify(inst);
1471 
1472  // Some instructions will be sent to commit without having
1473  // executed because they need commit to handle them.
1474  // E.g. Strictly ordered loads have not actually executed when they
1475  // are first sent to commit. Instead commit must tell the LSQ
1476  // when it's ready to execute the strictly ordered load.
1477  if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1478  int dependents = instQueue.wakeDependents(inst);
1479 
1480  for (int i = 0; i < inst->numDestRegs(); i++) {
1481  // Mark register as ready if not pinned
1482  if (inst->renamedDestRegIdx(i)->
1483  getNumPinnedWritesToComplete() == 0) {
1484  DPRINTF(IEW,"Setting Destination Register %i (%s)\n",
1485  inst->renamedDestRegIdx(i)->index(),
1486  inst->renamedDestRegIdx(i)->className());
1487  scoreboard->setReg(inst->renamedDestRegIdx(i));
1488  }
1489  }
1490 
1491  if (dependents) {
1492  producerInst[tid]++;
1493  consumerInst[tid]+= dependents;
1494  }
1495  writebackCount[tid]++;
1496  }
1497  }
1498 }
1499 
1500 template<class Impl>
1501 void
1503 {
1504  wbNumInst = 0;
1505  wbCycle = 0;
1506 
1507  wroteToTimeBuffer = false;
1508  updatedQueues = false;
1509 
1510  ldstQueue.tick();
1511 
1512  sortInsts();
1513 
1514  // Free function units marked as being freed this cycle.
1516 
1517  list<ThreadID>::iterator threads = activeThreads->begin();
1519 
1520  // Check stall and squash signals, dispatch any instructions.
1521  while (threads != end) {
1522  ThreadID tid = *threads++;
1523 
1524  DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1525 
1526  checkSignalsAndUpdate(tid);
1527  dispatch(tid);
1528  }
1529 
1530  if (exeStatus != Squashing) {
1531  executeInsts();
1532 
1533  writebackInsts();
1534 
1535  // Have the instruction queue try to schedule any ready instructions.
1536  // (In actuality, this scheduling is for instructions that will
1537  // be executed next cycle.)
1538  instQueue.scheduleReadyInsts();
1539 
1540  // Also should advance its own time buffers if the stage ran.
1541  // Not the best place for it, but this works (hopefully).
1543  }
1544 
1545  bool broadcast_free_entries = false;
1546 
1548  exeStatus = Idle;
1549  updateLSQNextCycle = false;
1550 
1551  broadcast_free_entries = true;
1552  }
1553 
1554  // Writeback any stores using any leftover bandwidth.
1556 
1557  // Check the committed load/store signals to see if there's a load
1558  // or store to commit. Also check if it's being told to execute a
1559  // nonspeculative instruction.
1560  // This is pretty inefficient...
1561 
1562  threads = activeThreads->begin();
1563  while (threads != end) {
1564  ThreadID tid = (*threads++);
1565 
1566  DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1567 
1568  // Update structures based on instructions committed.
1569  if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1570  !fromCommit->commitInfo[tid].squash &&
1571  !fromCommit->commitInfo[tid].robSquashing) {
1572 
1573  ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1574 
1575  ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1576 
1577  updateLSQNextCycle = true;
1578  instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1579  }
1580 
1581  if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1582 
1583  //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1584  if (fromCommit->commitInfo[tid].strictlyOrdered) {
1585  instQueue.replayMemInst(
1586  fromCommit->commitInfo[tid].strictlyOrderedLoad);
1587  fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit();
1588  } else {
1589  instQueue.scheduleNonSpec(
1590  fromCommit->commitInfo[tid].nonSpecSeqNum);
1591  }
1592  }
1593 
1594  if (broadcast_free_entries) {
1595  toFetch->iewInfo[tid].iqCount =
1596  instQueue.getCount(tid);
1597  toFetch->iewInfo[tid].ldstqCount =
1598  ldstQueue.getCount(tid);
1599 
1600  toRename->iewInfo[tid].usedIQ = true;
1601  toRename->iewInfo[tid].freeIQEntries =
1602  instQueue.numFreeEntries(tid);
1603  toRename->iewInfo[tid].usedLSQ = true;
1604 
1605  toRename->iewInfo[tid].freeLQEntries =
1607  toRename->iewInfo[tid].freeSQEntries =
1609 
1610  wroteToTimeBuffer = true;
1611  }
1612 
1613  DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1614  tid, toRename->iewInfo[tid].dispatched);
1615  }
1616 
1617  DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1618  "LQ has %i free entries. SQ has %i free entries.\n",
1619  instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1621 
1622  updateStatus();
1623 
1624  if (wroteToTimeBuffer) {
1625  DPRINTF(Activity, "Activity this cycle.\n");
1626  cpu->activityThisCycle();
1627  }
1628 }
1629 
1630 template <class Impl>
1631 void
1633 {
1634  ThreadID tid = inst->threadNumber;
1635 
1636  iewExecutedInsts++;
1637 
1638 #if TRACING_ON
1639  if (DTRACE(O3PipeView)) {
1640  inst->completeTick = curTick() - inst->fetchTick;
1641  }
1642 #endif
1643 
1644  //
1645  // Control operations
1646  //
1647  if (inst->isControl())
1648  iewExecutedBranches[tid]++;
1649 
1650  //
1651  // Memory operations
1652  //
1653  if (inst->isMemRef()) {
1654  iewExecutedRefs[tid]++;
1655 
1656  if (inst->isLoad()) {
1657  iewExecLoadInsts[tid]++;
1658  }
1659  }
1660 }
1661 
1662 template <class Impl>
1663 void
1665 {
1666  ThreadID tid = inst->threadNumber;
1667 
1668  if (!fetchRedirect[tid] ||
1669  !toCommit->squash[tid] ||
1670  toCommit->squashedSeqNum[tid] > inst->seqNum) {
1671 
1672  if (inst->mispredicted()) {
1673  fetchRedirect[tid] = true;
1674 
1675  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1676  "Branch mispredict detected.\n",
1677  tid,inst->seqNum);
1678  DPRINTF(IEW, "[tid:%i] [sn:%llu] Predicted target "
1679  "was PC:%#x, NPC:%#x\n",
1680  tid,inst->seqNum,
1681  inst->predInstAddr(), inst->predNextInstAddr());
1682  DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1683  "Redirecting fetch to PC: %#x, "
1684  "NPC: %#x.\n",
1685  tid,inst->seqNum,
1686  inst->nextInstAddr(),
1687  inst->nextInstAddr());
1688  // If incorrect, then signal the ROB that it must be squashed.
1689  squashDueToBranch(inst, tid);
1690 
1691  if (inst->readPredTaken()) {
1693  } else {
1695  }
1696  }
1697  }
1698 }
1699 
1700 #endif//__CPU_O3_IEW_IMPL_IMPL_HH__
Cycles renameToIEWDelay
Rename to IEW delay.
Definition: iew.hh:382
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:163
#define DPRINTF(x,...)
Definition: trace.hh:225
Stats::Vector iewExecutedBranches
Number of executed branches.
Definition: iew.hh:465
void setTimeBuffer(TimeBuffer< TimeStruct > *tb_ptr)
Sets main time buffer used for backwards communication.
Definition: iew_impl.hh:339
unsigned issueWidth
Width of issue, in instructions.
Definition: iew.hh:395
void takeOverFrom()
Takes over execution from another CPU&#39;s thread.
Definition: lsq_impl.hh:167
Scoreboard * scoreboard
Scoreboard pointer.
Definition: iew.hh:341
bool fetchRedirect[Impl::MaxThreads]
Records if there is a fetch redirect on this cycle for each thread.
Definition: iew.hh:371
StageStatus exeStatus
Execute status.
Definition: iew.hh:120
void takeOverFrom()
Takes over from another CPU&#39;s thread.
Definition: fu_pool.hh:175
Stats::Scalar iewDispStoreInsts
Stat for total number of dispatched store instructions.
Definition: iew.hh:434
Stats::Scalar iewExecutedInsts
Stat for total number of executed instructions.
Definition: iew.hh:451
decltype(nullptr) constexpr NoFault
Definition: types.hh:243
void setIEWQueue(TimeBuffer< IEWStruct > *iq_ptr)
Sets time buffer to pass on instructions to commit.
Definition: iew_impl.hh:367
#define fatal(...)
This implements a cprintf based fatal() function.
Definition: logging.hh:171
void rescheduleMemInst(const DynInstPtr &inst)
Tells memory dependence unit that a memory instruction needs to be rescheduled.
Definition: iew_impl.hh:593
Stats::Scalar iewIdleCycles
Stat for total number of idle cycles.
Definition: iew.hh:420
bool willWB()
Returns if the LSQ will write back to memory this cycle.
Definition: lsq_impl.hh:655
bool updatedQueues
Records if the queues have been changed (inserted or issued insts), so that IEW knows to broadcast th...
Definition: iew.hh:376
Bitfield< 7 > i
void setRenameQueue(TimeBuffer< RenameStruct > *rq_ptr)
Sets time buffer for getting instructions coming from rename.
Definition: iew_impl.hh:357
Stats::Scalar iewUnblockCycles
Stat for total number of unblocking cycles.
Definition: iew.hh:426
Stats::Scalar iewSquashCycles
Stat for total number of squashing cycles.
Definition: iew.hh:422
void startupStage()
Initializes stage; sends back the number of free IQ and LSQ entries.
Definition: iew_impl.hh:304
Stats::Formula iewExecRate
Number of instructions executed per cycle.
Definition: iew.hh:469
void unblock(ThreadID tid)
Unblocks Dispatch if the skid buffer is empty, and signals back to other stages to unblock...
Definition: iew_impl.hh:569
Stats::Scalar iewLSQFullEvents
Stat for number of times the LSQ becomes full.
Definition: iew.hh:440
Stats::Scalar iewIQFullEvents
Stat for number of times the IQ becomes full.
Definition: iew.hh:438
void tick()
Ticks the LSQ.
Definition: lsq_impl.hh:179
ThreadID numThreads
Number of active threads.
Definition: iew.hh:411
void notify(const Arg &arg)
called at the ProbePoint call site, passes arg to each listener.
Definition: probe.hh:286
void printAvailableInsts()
Debug function to print instructions that are issued this cycle.
Definition: iew_impl.hh:1182
bool sqFull()
Returns if any of the SQs are full.
Definition: lsq_impl.hh:582
O3CPU * cpu
CPU pointer.
Definition: iew.hh:345
Cycles issueToExecuteDelay
Issue to execute delay.
Definition: iew.hh:389
TimeBuffer< TimeStruct > * timeBuffer
Pointer to main time buffer used for backwards communication.
Definition: iew.hh:302
bool violation()
Returns whether or not there was a memory ordering violation.
Definition: lsq_impl.hh:285
Stats::Vector iewExecutedRefs
Number of executed meomory references.
Definition: iew.hh:463
unsigned getSize()
Definition: timebuf.hh:241
DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
Constructs a DefaultIEW with the given parameters.
Definition: iew_impl.hh:66
void squash(ThreadID tid)
Squashes instructions in IEW for a specific thread.
Definition: iew_impl.hh:461
bool isDrained() const
Have all the FUs drained?
Definition: fu_pool.cc:240
std::queue< DynInstPtr > insts[Impl::MaxThreads]
Queue of all instructions coming from rename this cycle.
Definition: iew.hh:335
void advance()
Definition: timebuf.hh:176
Overload hash function for BasicBlockRange type.
Definition: vec_reg.hh:587
bool checkStall(ThreadID tid)
Checks if any of the stall conditions are currently true.
Definition: iew_impl.hh:763
Fault executeLoad(const DynInstPtr &inst)
Executes a load.
Definition: lsq_impl.hh:248
std::list< ThreadID > * activeThreads
Pointer to list of active threads.
Definition: iew.hh:414
unsigned wbNumInst
Index into queue of instructions being written back.
Definition: iew.hh:398
unsigned dispatchWidth
Width of dispatch, in instructions.
Definition: iew.hh:392
TimeBuffer< TimeStruct >::wire toFetch
Wire to write information heading to previous stages.
Definition: iew.hh:305
Derived & flags(Flags _flags)
Set the flags and marks this stat to print at the end of simulation.
Definition: statistics.hh:333
void writebackStores()
Attempts to write back stores until all cache ports are used or the interface becomes blocked...
Definition: lsq_impl.hh:266
StageStatus wbStatus
Writeback status.
Definition: iew.hh:122
Derived & init(size_type size)
Set this vector to have the given size.
Definition: statistics.hh:1149
void instToCommit(const DynInstPtr &inst)
Sends an instruction to commit through the time buffer.
Definition: iew_impl.hh:621
unsigned validInstsFromRename()
Returns the number of valid, non-squashed instructions coming from rename to dispatch.
Definition: iew_impl.hh:650
TimeBuffer< IEWStruct > * iewQueue
IEW stage time buffer.
Definition: iew.hh:329
Stats::Vector iewExecutedSwp
Number of executed software prefetches.
Definition: iew.hh:459
ProbePointArg< DynInstPtr > * ppToCommit
To probe when instruction execution is complete.
Definition: iew.hh:130
Stats::Vector writebackCount
Number of instructions that writeback.
Definition: iew.hh:474
Stats::Scalar iewDispNonSpecInsts
Stat for total number of dispatched non speculative instructions.
Definition: iew.hh:436
Implements a simple scoreboard to track which registers are ready.
Definition: scoreboard.hh:48
void cacheUnblocked()
Notifies that the cache has become unblocked.
Definition: iew_impl.hh:614
IQ instQueue
Instruction queue.
Definition: iew.hh:357
TimeBuffer< IssueStruct >::wire fromIssue
Wire to read information from the issue stage time queue.
Definition: iew.hh:323
Tick curTick()
The current simulated tick.
Definition: core.hh:44
Bitfield< 4 > pc
void insertLoad(const DynInstPtr &load_inst)
Inserts a load into the LSQ.
Definition: lsq_impl.hh:230
bool isDrained() const
Has the LSQ drained?
Definition: lsq_impl.hh:148
void activateStage()
Tells CPU that the IEW stage is active and running.
Definition: iew_impl.hh:895
#define DTRACE(x)
Definition: trace.hh:223
unsigned numFreeStoreEntries()
Returns the number of free store entries.
Definition: lsq_impl.hh:451
void dispatchInsts(ThreadID tid)
Dispatches instructions to IQ and LSQ.
Definition: iew_impl.hh:959
std::queue< DynInstPtr > skidBuffer[Impl::MaxThreads]
Skid buffer between rename and IEW.
Definition: iew.hh:338
void drainSanityCheck() const
Perform sanity checks after a drain.
Definition: lsq_impl.hh:138
Status _status
Overall stage status.
Definition: iew.hh:116
TimeBuffer< IssueStruct > issueToExecQueue
Issue stage queue.
Definition: iew.hh:320
ProbePointArg< DynInstPtr > * ppDispatch
Definition: iew.hh:126
Stats::Scalar iewExecSquashedInsts
Stat for total number of executed store instructions.
Definition: iew.hh:457
void setReg(PhysRegIdPtr phys_reg)
Sets the register as ready.
Definition: scoreboard.hh:95
TimeBuffer< TimeStruct >::wire fromCommit
Wire to get commit&#39;s output from backwards time buffer.
Definition: iew.hh:308
Stats::Scalar iewDispLoadInsts
Stat for total number of dispatched load instructions.
Definition: iew.hh:432
void takeOverFrom()
Takes over from another CPU&#39;s thread.
Definition: iew_impl.hh:433
Stats::Formula wbRate
Number of instructions per cycle written back.
Definition: iew.hh:480
Stats::Scalar iewDispatchedInsts
Stat for total number of instructions dispatched.
Definition: iew.hh:428
void tick()
Ticks IEW stage, causing Dispatch, the IQ, the LSQ, Execute, and Writeback to run for one cycle...
Definition: iew_impl.hh:1502
void emptyRenameInsts(ThreadID tid)
Removes instructions from rename from a thread&#39;s instruction list.
Definition: iew_impl.hh:858
void checkSignalsAndUpdate(ThreadID tid)
Processes inputs and changes state accordingly.
Definition: iew_impl.hh:780
unsigned wbWidth
Writeback width.
Definition: iew.hh:408
Fault executeStore(const DynInstPtr &inst)
Executes a store.
Definition: lsq_impl.hh:257
void replayMemInst(const DynInstPtr &inst)
Re-executes all rescheduled memory instructions.
Definition: iew_impl.hh:600
void wakeCPU()
Tells the CPU to wakeup if it has descheduled itself due to no activity.
Definition: iew_impl.hh:880
void advancePC(PCState &pc, const StaticInstPtr &inst)
Definition: utility.hh:393
unsigned wbCycle
Cycle number within the queue of instructions being written back.
Definition: iew.hh:405
Stats::Vector iewExecutedNop
Number of executed nops.
Definition: iew.hh:461
Cycles commitToIEWDelay
Commit to IEW delay.
Definition: iew.hh:379
Stats::Scalar iewDispSquashedInsts
Stat for total number of squashed instructions dispatch skips.
Definition: iew.hh:430
bool updateLSQNextCycle
Records if the LSQ needs to be updated on the next cycle, so that IEW knows if there will be activity...
Definition: iew.hh:367
void insertStore(const DynInstPtr &store_inst)
Inserts a store into the LSQ.
Definition: lsq_impl.hh:239
const FlagsType total
Print the total.
Definition: info.hh:49
Stats::Vector producerInst
Number of instructions that wake consumers.
Definition: iew.hh:476
bool isDrained() const
Has the stage drained?
Definition: iew_impl.hh:394
int getCount()
Returns the number of instructions in all of the queues.
Definition: lsq_impl.hh:379
Stats::Scalar predictedTakenIncorrect
Stat for total number of incorrect predicted taken branches.
Definition: iew.hh:444
Derived & name(const std::string &name)
Set the name and marks this stat to print at the end of simulation.
Definition: statistics.hh:276
void activityThisCycle()
Reports to the CPU that there is activity this cycle.
Definition: iew_impl.hh:887
int16_t ThreadID
Thread index/ID type.
Definition: types.hh:225
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets pointer to list of active threads.
Definition: iew_impl.hh:377
Stats::Scalar memOrderViolationEvents
Stat for total number of memory ordering violation events.
Definition: iew.hh:442
void regStats()
Registers statistics.
Definition: iew_impl.hh:144
void updateExeInstStats(const DynInstPtr &inst)
Updates execution stats based on the instruction.
Definition: iew_impl.hh:1632
void commitStores(InstSeqNum &youngest_inst, ThreadID tid)
Commits stores up until the given sequence number for a specific thread.
Definition: lsq.hh:866
int skidCount()
Returns the max of the number of entries in all of the skid buffers.
Definition: iew_impl.hh:686
void setScoreboard(Scoreboard *sb_ptr)
Sets pointer to the scoreboard.
Definition: iew_impl.hh:387
bool wroteToTimeBuffer
Records if IEW has written to the time buffer this cycle, so that the CPU can deschedule itself if th...
Definition: iew.hh:350
Stats::Formula iewExecStoreInsts
Number of executed store instructions.
Definition: iew.hh:467
unsigned numFreeLoadEntries()
Returns the number of free load entries.
Definition: lsq_impl.hh:433
void squashDueToBranch(const DynInstPtr &inst, ThreadID tid)
Sends commit proper information for a squash due to a branch mispredict.
Definition: iew_impl.hh:497
void executeInsts()
Executes instructions.
Definition: iew_impl.hh:1205
TimeBuffer< RenameStruct > * renameQueue
Rename instruction queue interface.
Definition: iew.hh:314
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets the pointer to the list of active threads.
Definition: lsq_impl.hh:130
void writebackInsts()
Writebacks instructions.
Definition: iew_impl.hh:1452
void blockMemInst(const DynInstPtr &inst)
Moves memory instruction onto the list of cache blocked instructions.
Definition: iew_impl.hh:607
void wakeDependents(const DynInstPtr &inst)
Wakes all dependents of a completed instruction.
Definition: iew_impl.hh:586
std::string name() const
Returns the name of the DefaultIEW stage.
Definition: iew_impl.hh:117
void sortInsts()
Sorts instructions coming from rename into lists separated by thread.
Definition: iew_impl.hh:844
void checkMisprediction(const DynInstPtr &inst)
Check misprediction.
Definition: iew_impl.hh:1664
Stats::Vector iewInstsToCommit
Number of instructions sent to commit.
Definition: iew.hh:472
void dispatch(ThreadID tid)
Determines proper actions to take given Dispatch&#39;s status.
Definition: iew_impl.hh:911
void skidInsert(ThreadID tid)
Inserts unused instructions of a thread into the skid buffer.
Definition: iew_impl.hh:664
TimeBuffer< RenameStruct >::wire fromRename
Wire to get rename&#39;s output from rename queue.
Definition: iew.hh:317
unsigned size
Definition: timebuf.hh:42
LSQ ldstQueue
Load / store queue.
Definition: iew.hh:360
wire getWire(int idx)
Definition: timebuf.hh:229
TimeBuffer< IEWStruct >::wire toCommit
Wire to write infromation heading to commit.
Definition: iew.hh:332
Stats::Formula branchMispredicts
Stat for total number of mispredicted branches detected at execute.
Definition: iew.hh:448
void deactivateStage()
Tells CPU that the IEW stage is inactive and idle.
Definition: iew_impl.hh:903
bool skidsEmpty()
Returns if all of the skid buffers are empty.
Definition: iew_impl.hh:705
unsigned skidBufferMax
Maximum size of the skid buffer.
Definition: iew.hh:417
Derived & desc(const std::string &_desc)
Set the description and marks this stat to print at the end of simulation.
Definition: statistics.hh:309
void regStats()
Registers statistics of each LSQ unit.
Definition: lsq_impl.hh:120
Impl::DynInstPtr DynInstPtr
Definition: iew.hh:83
void squash(const InstSeqNum &squashed_num, ThreadID tid)
Squash instructions from a thread until the specified sequence number.
Definition: lsq.hh:881
ProbePointArg< DynInstPtr > * ppExecute
To probe when instruction execution begins.
Definition: iew.hh:128
void squashDueToMemOrder(const DynInstPtr &inst, ThreadID tid)
Sends commit proper information for a squash due to a memory order violation.
Definition: iew_impl.hh:523
TimeBuffer< TimeStruct >::wire toRename
Wire to write information heading to previous stages.
Definition: iew.hh:311
StageStatus dispatchStatus[Impl::MaxThreads]
Dispatch status.
Definition: iew.hh:118
ProbePointArg< DynInstPtr > * ppMispredict
Probe points.
Definition: iew.hh:125
void clearStates(ThreadID tid)
Clear all thread-specific states.
Definition: iew_impl.hh:326
MasterPort & getDataPort()
Definition: lsq.hh:1056
GenericISA::DelaySlotPCState< MachInst > PCState
Definition: types.hh:41
void block(ThreadID tid)
Sets Dispatch to blocked, and signals back to other stages to block.
Definition: iew_impl.hh:550
Stats::Scalar predictedNotTakenIncorrect
Stat for total number of incorrect predicted not taken branches.
Definition: iew.hh:446
Impl::O3CPU O3CPU
Definition: iew.hh:84
Stats::Vector iewExecLoadInsts
Stat for total number of executed load instructions.
Definition: iew.hh:453
DynInstPtr getMemDepViolator(ThreadID tid)
Gets the instruction that caused the memory ordering violation.
Definition: lsq.hh:896
Stats::Vector consumerInst
Number of instructions that wake up from producers.
Definition: iew.hh:478
std::shared_ptr< FaultBase > Fault
Definition: types.hh:238
void regProbePoints()
Registers probes.
Definition: iew_impl.hh:124
void processFreeUnits()
Frees all FUs on the list.
Definition: fu_pool.cc:193
void commitLoads(InstSeqNum &youngest_inst, ThreadID tid)
Commits loads up until the given sequence number for a specific thread.
Definition: lsq.hh:860
Stats::Scalar iewBlockCycles
Stat for total number of blocking cycles.
Definition: iew.hh:424
void updateStatus()
Updates overall IEW status based on all of the stages&#39; statuses.
Definition: iew_impl.hh:722
FUPool * fuPool
Pointer to the functional unit pool.
Definition: iew.hh:363
bool lqFull()
Returns if any of the LQs are full.
Definition: lsq_impl.hh:553
Stats::Formula wbFanout
Average number of woken instructions per writeback.
Definition: iew.hh:482
void drainSanityCheck() const
Perform sanity checks after a drain.
Definition: iew_impl.hh:423

Generated on Thu May 28 2020 16:21:31 for gem5 by doxygen 1.8.13