gem5  v20.0.0.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
dram_ctrl.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2020 ARM Limited
3  * All rights reserved
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Copyright (c) 2013 Amin Farmahini-Farahani
15  * All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions are
19  * met: redistributions of source code must retain the above copyright
20  * notice, this list of conditions and the following disclaimer;
21  * redistributions in binary form must reproduce the above copyright
22  * notice, this list of conditions and the following disclaimer in the
23  * documentation and/or other materials provided with the distribution;
24  * neither the name of the copyright holders nor the names of its
25  * contributors may be used to endorse or promote products derived from
26  * this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 #include "mem/dram_ctrl.hh"
42 
43 #include "base/bitfield.hh"
44 #include "base/trace.hh"
45 #include "debug/DRAM.hh"
46 #include "debug/DRAMPower.hh"
47 #include "debug/DRAMState.hh"
48 #include "debug/Drain.hh"
49 #include "debug/QOS.hh"
50 #include "sim/system.hh"
51 
52 using namespace std;
53 using namespace Data;
54 
55 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56  QoS::MemCtrl(p),
57  port(name() + ".port", *this), isTimingMode(false),
58  retryRdReq(false), retryWrReq(false),
59  nextReqEvent([this]{ processNextReqEvent(); }, name()),
60  respondEvent([this]{ processRespondEvent(); }, name()),
61  deviceSize(p->device_size),
62  deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
63  deviceRowBufferSize(p->device_rowbuffer_size),
64  devicesPerRank(p->devices_per_rank),
69  ranksPerChannel(p->ranks_per_channel),
70  bankGroupsPerRank(p->bank_groups_per_rank),
71  bankGroupArch(p->bank_groups_per_rank > 0),
72  banksPerRank(p->banks_per_rank), rowsPerBank(0),
73  readBufferSize(p->read_buffer_size),
74  writeBufferSize(p->write_buffer_size),
75  writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
76  writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
77  minWritesPerSwitch(p->min_writes_per_switch),
79  tCK(p->tCK), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
80  tBURST_MIN(p->tBURST_MIN),
81  tCCD_L_WR(p->tCCD_L_WR),
82  tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
83  tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
84  tRRD_L(p->tRRD_L), tPPD(p->tPPD), tAAD(p->tAAD), tXAW(p->tXAW),
85  tXP(p->tXP), tXS(p->tXS),
86  clkResyncDelay(tCL + p->tBURST_MAX),
87  maxCommandsPerBurst(burstLength / p->beats_per_clock),
88  dataClockSync(p->data_clock_sync),
89  twoCycleActivate(p->two_cycle_activate),
90  activationLimit(p->activation_limit), rankToRankDly(tCS + tBURST),
91  wrToRdDly(tCL + tBURST + p->tWTR), rdToWrDly(tRTW + tBURST),
92  wrToRdDlySameBG(tCL + p->tBURST_MAX + p->tWTR_L),
93  rdToWrDlySameBG(tRTW + p->tBURST_MAX),
95  burstDataCycles(burstInterleave ? p->tBURST_MAX / 2 : tBURST),
96  memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
97  pageMgmt(p->page_policy),
98  maxAccessesPerRow(p->max_accesses_per_row),
99  frontendLatency(p->static_frontend_latency),
100  backendLatency(p->static_backend_latency),
101  nextBurstAt(0), prevArrival(0),
102  nextReqTime(0),
103  stats(*this),
105  lastStatsResetTick(0), enableDRAMPowerdown(p->enable_dram_powerdown)
106 {
107  // sanity check the ranks since we rely on bit slicing for the
108  // address decoding
109  fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
110  "allowed, must be a power of two\n", ranksPerChannel);
111 
112  fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
113  "must be a power of two\n", burstSize);
114  readQueue.resize(p->qos_priorities);
115  writeQueue.resize(p->qos_priorities);
116 
117  for (int i = 0; i < ranksPerChannel; i++) {
118  Rank* rank = new Rank(*this, p, i);
119  ranks.push_back(rank);
120  }
121 
122  // perform a basic check of the write thresholds
123  if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
124  fatal("Write buffer low threshold %d must be smaller than the "
125  "high threshold %d\n", p->write_low_thresh_perc,
126  p->write_high_thresh_perc);
127 
128  // determine the rows per bank by looking at the total capacity
129  uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
130 
131  // determine the dram actual capacity from the DRAM config in Mbytes
132  uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
133  ranksPerChannel;
134 
135  // if actual DRAM size does not match memory capacity in system warn!
136  if (deviceCapacity != capacity / (1024 * 1024))
137  warn("DRAM device capacity (%d Mbytes) does not match the "
138  "address range assigned (%d Mbytes)\n", deviceCapacity,
139  capacity / (1024 * 1024));
140 
141  DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
143 
144  DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
146 
148 
149  // some basic sanity checks
150  if (tREFI <= tRP || tREFI <= tRFC) {
151  fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
152  tREFI, tRP, tRFC);
153  }
154 
155  // basic bank group architecture checks ->
156  if (bankGroupArch) {
157  // must have at least one bank per bank group
159  fatal("banks per rank (%d) must be equal to or larger than "
160  "banks groups per rank (%d)\n",
162  }
163  // must have same number of banks in each bank group
164  if ((banksPerRank % bankGroupsPerRank) != 0) {
165  fatal("Banks per rank (%d) must be evenly divisible by bank groups "
166  "per rank (%d) for equal banks per bank group\n",
167  banksPerRank, bankGroupsPerRank);
168  }
169  // tCCD_L should be greater than minimal, back-to-back burst delay
170  if (tCCD_L <= tBURST) {
171  fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
172  "bank groups per rank (%d) is greater than 1\n",
173  tCCD_L, tBURST, bankGroupsPerRank);
174  }
175  // tCCD_L_WR should be greater than minimal, back-to-back burst delay
176  if (tCCD_L_WR <= tBURST) {
177  fatal("tCCD_L_WR (%d) should be larger than tBURST (%d) when "
178  "bank groups per rank (%d) is greater than 1\n",
179  tCCD_L_WR, tBURST, bankGroupsPerRank);
180  }
181  // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
182  // some datasheets might specify it equal to tRRD
183  if (tRRD_L < tRRD) {
184  fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
185  "bank groups per rank (%d) is greater than 1\n",
186  tRRD_L, tRRD, bankGroupsPerRank);
187  }
188  }
189 
190 }
191 
192 void
194 {
195  MemCtrl::init();
196 
197  if (!port.isConnected()) {
198  fatal("DRAMCtrl %s is unconnected!\n", name());
199  } else {
201  }
202 
203  // a bit of sanity checks on the interleaving, save it for here to
204  // ensure that the system pointer is initialised
205  if (range.interleaved()) {
206  if (addrMapping == Enums::RoRaBaChCo) {
207  if (rowBufferSize != range.granularity()) {
208  fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
209  "address map\n", name());
210  }
211  } else if (addrMapping == Enums::RoRaBaCoCh ||
212  addrMapping == Enums::RoCoRaBaCh) {
213  // for the interleavings with channel bits in the bottom,
214  // if the system uses a channel striping granularity that
215  // is larger than the DRAM burst size, then map the
216  // sequential accesses within a stripe to a number of
217  // columns in the DRAM, effectively placing some of the
218  // lower-order column bits as the least-significant bits
219  // of the address (above the ones denoting the burst size)
220  assert(columnsPerStripe >= 1);
221 
222  // channel striping has to be done at a granularity that
223  // is equal or larger to a cache line
224  if (system()->cacheLineSize() > range.granularity()) {
225  fatal("Channel interleaving of %s must be at least as large "
226  "as the cache line size\n", name());
227  }
228 
229  // ...and equal or smaller than the row-buffer size
230  if (rowBufferSize < range.granularity()) {
231  fatal("Channel interleaving of %s must be at most as large "
232  "as the row-buffer size\n", name());
233  }
234  // this is essentially the check above, so just to be sure
236  }
237  }
238 }
239 
240 void
242 {
243  // remember the memory system mode of operation
245 
246  if (isTimingMode) {
247  // timestamp offset should be in clock cycles for DRAMPower
249 
250  // update the start tick for the precharge accounting to the
251  // current tick
252  for (auto r : ranks) {
253  r->startup(curTick() + tREFI - tRP);
254  }
255 
256  // shift the bus busy time sufficiently far ahead that we never
257  // have to worry about negative values when computing the time for
258  // the next request, this will add an insignificant bubble at the
259  // start of simulation
260  nextBurstAt = curTick() + tRP + tRCD;
261  }
262 }
263 
264 Tick
266 {
267  DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
268 
269  panic_if(pkt->cacheResponding(), "Should not see packets where cache "
270  "is responding");
271 
272  // do the actual memory access and turn the packet into a response
273  access(pkt);
274 
275  Tick latency = 0;
276  if (pkt->hasData()) {
277  // this value is not supposed to be accurate, just enough to
278  // keep things going, mimic a closed page
279  latency = tRP + tRCD + tCL;
280  }
281  return latency;
282 }
283 
284 bool
285 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
286 {
287  DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
289  neededEntries);
290 
291  auto rdsize_new = totalReadQueueSize + respQueue.size() + neededEntries;
292  return rdsize_new > readBufferSize;
293 }
294 
295 bool
296 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
297 {
298  DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
299  writeBufferSize, totalWriteQueueSize, neededEntries);
300 
301  auto wrsize_new = (totalWriteQueueSize + neededEntries);
302  return wrsize_new > writeBufferSize;
303 }
304 
306 DRAMCtrl::decodeAddr(const PacketPtr pkt, Addr dramPktAddr, unsigned size,
307  bool isRead) const
308 {
309  // decode the address based on the address mapping scheme, with
310  // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311  // channel, respectively
312  uint8_t rank;
313  uint8_t bank;
314  // use a 64-bit unsigned during the computations as the row is
315  // always the top bits, and check before creating the DRAMPacket
316  uint64_t row;
317 
318  // truncate the address to a DRAM burst, which makes it unique to
319  // a specific column, row, bank, rank and channel
320  Addr addr = dramPktAddr / burstSize;
321 
322  // we have removed the lowest order address bits that denote the
323  // position within the column
324  if (addrMapping == Enums::RoRaBaChCo || addrMapping == Enums::RoRaBaCoCh) {
325  // the lowest order bits denote the column to ensure that
326  // sequential cache lines occupy the same row
327  addr = addr / columnsPerRowBuffer;
328 
329  // after the channel bits, get the bank bits to interleave
330  // over the banks
331  bank = addr % banksPerRank;
332  addr = addr / banksPerRank;
333 
334  // after the bank, we get the rank bits which thus interleaves
335  // over the ranks
336  rank = addr % ranksPerChannel;
337  addr = addr / ranksPerChannel;
338 
339  // lastly, get the row bits, no need to remove them from addr
340  row = addr % rowsPerBank;
341  } else if (addrMapping == Enums::RoCoRaBaCh) {
342  // optimise for closed page mode and utilise maximum
343  // parallelism of the DRAM (at the cost of power)
344 
345  // take out the lower-order column bits
346  addr = addr / columnsPerStripe;
347 
348  // start with the bank bits, as this provides the maximum
349  // opportunity for parallelism between requests
350  bank = addr % banksPerRank;
351  addr = addr / banksPerRank;
352 
353  // next get the rank bits
354  rank = addr % ranksPerChannel;
355  addr = addr / ranksPerChannel;
356 
357  // next, the higher-order column bites
358  addr = addr / (columnsPerRowBuffer / columnsPerStripe);
359 
360  // lastly, get the row bits, no need to remove them from addr
361  row = addr % rowsPerBank;
362  } else
363  panic("Unknown address mapping policy chosen!");
364 
365  assert(rank < ranksPerChannel);
366  assert(bank < banksPerRank);
367  assert(row < rowsPerBank);
368  assert(row < Bank::NO_ROW);
369 
370  DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
371  dramPktAddr, rank, bank, row);
372 
373  // create the corresponding DRAM packet with the entry time and
374  // ready time set to the current tick, the latter will be updated
375  // later
376  uint16_t bank_id = banksPerRank * rank + bank;
377  return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
378  size, ranks[rank]->banks[bank], *ranks[rank]);
379 }
380 
381 void
382 DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
383 {
384  // only add to the read queue here. whenever the request is
385  // eventually done, set the readyTime, and call schedule()
386  assert(!pkt->isWrite());
387 
388  assert(pktCount != 0);
389 
390  // if the request size is larger than burst size, the pkt is split into
391  // multiple DRAM packets
392  // Note if the pkt starting address is not aligened to burst size, the
393  // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
394  // are aligned to burst size boundaries. This is to ensure we accurately
395  // check read packets against packets in write queue.
396  const Addr base_addr = getCtrlAddr(pkt->getAddr());
397  Addr addr = base_addr;
398  unsigned pktsServicedByWrQ = 0;
399  BurstHelper* burst_helper = NULL;
400  for (int cnt = 0; cnt < pktCount; ++cnt) {
401  unsigned size = std::min((addr | (burstSize - 1)) + 1,
402  base_addr + pkt->getSize()) - addr;
403  stats.readPktSize[ceilLog2(size)]++;
404  stats.readBursts++;
406 
407  // First check write buffer to see if the data is already at
408  // the controller
409  bool foundInWrQ = false;
410  Addr burst_addr = burstAlign(addr);
411  // if the burst address is not present then there is no need
412  // looking any further
413  if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
414  for (const auto& vec : writeQueue) {
415  for (const auto& p : vec) {
416  // check if the read is subsumed in the write queue
417  // packet we are looking at
418  if (p->addr <= addr &&
419  ((addr + size) <= (p->addr + p->size))) {
420 
421  foundInWrQ = true;
423  pktsServicedByWrQ++;
424  DPRINTF(DRAM,
425  "Read to addr %lld with size %d serviced by "
426  "write queue\n",
427  addr, size);
429  break;
430  }
431  }
432  }
433  }
434 
435  // If not found in the write q, make a DRAM packet and
436  // push it onto the read queue
437  if (!foundInWrQ) {
438 
439  // Make the burst helper for split packets
440  if (pktCount > 1 && burst_helper == NULL) {
441  DPRINTF(DRAM, "Read to addr %lld translates to %d "
442  "dram requests\n", pkt->getAddr(), pktCount);
443  burst_helper = new BurstHelper(pktCount);
444  }
445 
446  DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
447  dram_pkt->burstHelper = burst_helper;
448 
449  assert(!readQueueFull(1));
451 
452  DPRINTF(DRAM, "Adding to read queue\n");
453 
454  readQueue[dram_pkt->qosValue()].push_back(dram_pkt);
455 
456  ++dram_pkt->rankRef.readEntries;
457 
458  // log packet
459  logRequest(MemCtrl::READ, pkt->masterId(), pkt->qosValue(),
460  dram_pkt->addr, 1);
461 
462  // Update stats
464  }
465 
466  // Starting address of next dram pkt (aligend to burstSize boundary)
467  addr = (addr | (burstSize - 1)) + 1;
468  }
469 
470  // If all packets are serviced by write queue, we send the repsonse back
471  if (pktsServicedByWrQ == pktCount) {
473  return;
474  }
475 
476  // Update how many split packets are serviced by write queue
477  if (burst_helper != NULL)
478  burst_helper->burstsServiced = pktsServicedByWrQ;
479 
480  // If we are not already scheduled to get a request out of the
481  // queue, do so now
482  if (!nextReqEvent.scheduled()) {
483  DPRINTF(DRAM, "Request scheduled immediately\n");
485  }
486 }
487 
488 void
489 DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
490 {
491  // only add to the write queue here. whenever the request is
492  // eventually done, set the readyTime, and call schedule()
493  assert(pkt->isWrite());
494 
495  // if the request size is larger than burst size, the pkt is split into
496  // multiple DRAM packets
497  const Addr base_addr = getCtrlAddr(pkt->getAddr());
498  Addr addr = base_addr;
499  for (int cnt = 0; cnt < pktCount; ++cnt) {
500  unsigned size = std::min((addr | (burstSize - 1)) + 1,
501  base_addr + pkt->getSize()) - addr;
502  stats.writePktSize[ceilLog2(size)]++;
503  stats.writeBursts++;
505 
506  // see if we can merge with an existing item in the write
507  // queue and keep track of whether we have merged or not
508  bool merged = isInWriteQueue.find(burstAlign(addr)) !=
509  isInWriteQueue.end();
510 
511  // if the item was not merged we need to create a new write
512  // and enqueue it
513  if (!merged) {
514  DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
515 
518 
519  DPRINTF(DRAM, "Adding to write queue\n");
520 
521  writeQueue[dram_pkt->qosValue()].push_back(dram_pkt);
522  isInWriteQueue.insert(burstAlign(addr));
523 
524  // log packet
525  logRequest(MemCtrl::WRITE, pkt->masterId(), pkt->qosValue(),
526  dram_pkt->addr, 1);
527 
528  assert(totalWriteQueueSize == isInWriteQueue.size());
529 
530  // Update stats
532 
533  // increment write entries of the rank
534  ++dram_pkt->rankRef.writeEntries;
535  } else {
536  DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
537 
538  // keep track of the fact that this burst effectively
539  // disappeared as it was merged with an existing one
541  }
542 
543  // Starting address of next dram pkt (aligend to burstSize boundary)
544  addr = (addr | (burstSize - 1)) + 1;
545  }
546 
547  // we do not wait for the writes to be send to the actual memory,
548  // but instead take responsibility for the consistency here and
549  // snoop the write queue for any upcoming reads
550  // @todo, if a pkt size is larger than burst size, we might need a
551  // different front end latency
553 
554  // If we are not already scheduled to get a request out of the
555  // queue, do so now
556  if (!nextReqEvent.scheduled()) {
557  DPRINTF(DRAM, "Request scheduled immediately\n");
559  }
560 }
561 
562 void
564 {
565 #if TRACING_ON
566  DPRINTF(DRAM, "===READ QUEUE===\n\n");
567  for (const auto& queue : readQueue) {
568  for (const auto& packet : queue) {
569  DPRINTF(DRAM, "Read %lu\n", packet->addr);
570  }
571  }
572 
573  DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
574  for (const auto& packet : respQueue) {
575  DPRINTF(DRAM, "Response %lu\n", packet->addr);
576  }
577 
578  DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
579  for (const auto& queue : writeQueue) {
580  for (const auto& packet : queue) {
581  DPRINTF(DRAM, "Write %lu\n", packet->addr);
582  }
583  }
584 #endif // TRACING_ON
585 }
586 
587 bool
589 {
590  // This is where we enter from the outside world
591  DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
592  pkt->cmdString(), pkt->getAddr(), pkt->getSize());
593 
594  panic_if(pkt->cacheResponding(), "Should not see packets where cache "
595  "is responding");
596 
597  panic_if(!(pkt->isRead() || pkt->isWrite()),
598  "Should only see read and writes at memory controller\n");
599 
600  // Calc avg gap between requests
601  if (prevArrival != 0) {
603  }
604  prevArrival = curTick();
605 
606 
607  // Find out how many dram packets a pkt translates to
608  // If the burst size is equal or larger than the pkt size, then a pkt
609  // translates to only one dram packet. Otherwise, a pkt translates to
610  // multiple dram packets
611  unsigned size = pkt->getSize();
612  unsigned offset = pkt->getAddr() & (burstSize - 1);
613  unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
614 
615  // run the QoS scheduler and assign a QoS priority value to the packet
616  qosSchedule( { &readQueue, &writeQueue }, burstSize, pkt);
617 
618  // check local buffers and do not accept if full
619  if (pkt->isWrite()) {
620  assert(size != 0);
621  if (writeQueueFull(dram_pkt_count)) {
622  DPRINTF(DRAM, "Write queue full, not accepting\n");
623  // remember that we have to retry this port
624  retryWrReq = true;
625  stats.numWrRetry++;
626  return false;
627  } else {
628  addToWriteQueue(pkt, dram_pkt_count);
629  stats.writeReqs++;
631  }
632  } else {
633  assert(pkt->isRead());
634  assert(size != 0);
635  if (readQueueFull(dram_pkt_count)) {
636  DPRINTF(DRAM, "Read queue full, not accepting\n");
637  // remember that we have to retry this port
638  retryRdReq = true;
639  stats.numRdRetry++;
640  return false;
641  } else {
642  addToReadQueue(pkt, dram_pkt_count);
643  stats.readReqs++;
645  }
646  }
647 
648  return true;
649 }
650 
651 void
653 {
654  DPRINTF(DRAM,
655  "processRespondEvent(): Some req has reached its readyTime\n");
656 
657  DRAMPacket* dram_pkt = respQueue.front();
658 
659  // if a read has reached its ready-time, decrement the number of reads
660  // At this point the packet has been handled and there is a possibility
661  // to switch to low-power mode if no other packet is available
662  --dram_pkt->rankRef.readEntries;
663  DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
664  dram_pkt->rank, dram_pkt->rankRef.readEntries);
665 
666  // counter should at least indicate one outstanding request
667  // for this read
668  assert(dram_pkt->rankRef.outstandingEvents > 0);
669  // read response received, decrement count
670  --dram_pkt->rankRef.outstandingEvents;
671 
672  // at this moment should not have transitioned to a low-power state
673  assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
674  (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
675  (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
676 
677  // track if this is the last packet before idling
678  // and that there are no outstanding commands to this rank
679  if (dram_pkt->rankRef.isQueueEmpty() &&
680  dram_pkt->rankRef.outstandingEvents == 0 &&
681  dram_pkt->rankRef.inRefIdleState() && enableDRAMPowerdown) {
682  // verify that there are no events scheduled
683  assert(!dram_pkt->rankRef.activateEvent.scheduled());
684  assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
685 
686  // if coming from active state, schedule power event to
687  // active power-down else go to precharge power-down
688  DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
689  "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
690 
691  // default to ACT power-down unless already in IDLE state
692  // could be in IDLE if PRE issued before data returned
693  PowerState next_pwr_state = PWR_ACT_PDN;
694  if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
695  next_pwr_state = PWR_PRE_PDN;
696  }
697 
698  dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
699  }
700 
701  if (dram_pkt->burstHelper) {
702  // it is a split packet
703  dram_pkt->burstHelper->burstsServiced++;
704  if (dram_pkt->burstHelper->burstsServiced ==
705  dram_pkt->burstHelper->burstCount) {
706  // we have now serviced all children packets of a system packet
707  // so we can now respond to the requester
708  // @todo we probably want to have a different front end and back
709  // end latency for split packets
711  delete dram_pkt->burstHelper;
712  dram_pkt->burstHelper = NULL;
713  }
714  } else {
715  // it is not a split packet
717  }
718 
719  assert(respQueue.front() == dram_pkt);
720  respQueue.pop_front();
721 
722  if (!respQueue.empty()) {
723  assert(respQueue.front()->readyTime >= curTick());
724  assert(!respondEvent.scheduled());
725  schedule(respondEvent, respQueue.front()->readyTime);
726  } else {
727  // if there is nothing left in any queue, signal a drain
728  if (drainState() == DrainState::Draining &&
730 
731  DPRINTF(Drain, "DRAM controller done draining\n");
732  signalDrainDone();
733  } else if ((dram_pkt->rankRef.refreshState == REF_PRE) &&
734  !dram_pkt->rankRef.prechargeEvent.scheduled()) {
735  // kick the refresh event loop into action again if banks already
736  // closed and just waiting for read to complete
737  schedule(dram_pkt->rankRef.refreshEvent, curTick());
738  }
739  }
740 
741  delete dram_pkt;
742 
743  // We have made a location in the queue available at this point,
744  // so if there is a read that was forced to wait, retry now
745  if (retryRdReq) {
746  retryRdReq = false;
747  port.sendRetryReq();
748  }
749 }
750 
751 DRAMCtrl::DRAMPacketQueue::iterator
752 DRAMCtrl::chooseNext(DRAMPacketQueue& queue, Tick extra_col_delay)
753 {
754  // This method does the arbitration between requests.
755 
756  DRAMCtrl::DRAMPacketQueue::iterator ret = queue.end();
757 
758  if (!queue.empty()) {
759  if (queue.size() == 1) {
760  // available rank corresponds to state refresh idle
761  DRAMPacket* dram_pkt = *(queue.begin());
762  if (ranks[dram_pkt->rank]->inRefIdleState()) {
763  ret = queue.begin();
764  DPRINTF(DRAM, "Single request, going to a free rank\n");
765  } else {
766  DPRINTF(DRAM, "Single request, going to a busy rank\n");
767  }
768  } else if (memSchedPolicy == Enums::fcfs) {
769  // check if there is a packet going to a free rank
770  for (auto i = queue.begin(); i != queue.end(); ++i) {
771  DRAMPacket* dram_pkt = *i;
772  if (ranks[dram_pkt->rank]->inRefIdleState()) {
773  ret = i;
774  break;
775  }
776  }
777  } else if (memSchedPolicy == Enums::frfcfs) {
778  ret = chooseNextFRFCFS(queue, extra_col_delay);
779  } else {
780  panic("No scheduling policy chosen\n");
781  }
782  }
783  return ret;
784 }
785 
786 DRAMCtrl::DRAMPacketQueue::iterator
788 {
789  // Only determine this if needed
790  vector<uint32_t> earliest_banks(ranksPerChannel, 0);
791 
792  // Has minBankPrep been called to populate earliest_banks?
793  bool filled_earliest_banks = false;
794  // can the PRE/ACT sequence be done without impacting utlization?
795  bool hidden_bank_prep = false;
796 
797  // search for seamless row hits first, if no seamless row hit is
798  // found then determine if there are other packets that can be issued
799  // without incurring additional bus delay due to bank timing
800  // Will select closed rows first to enable more open row possibilies
801  // in future selections
802  bool found_hidden_bank = false;
803 
804  // remember if we found a row hit, not seamless, but bank prepped
805  // and ready
806  bool found_prepped_pkt = false;
807 
808  // if we have no row hit, prepped or not, and no seamless packet,
809  // just go for the earliest possible
810  bool found_earliest_pkt = false;
811 
812  auto selected_pkt_it = queue.end();
813 
814  // time we need to issue a column command to be seamless
815  const Tick min_col_at = std::max(nextBurstAt + extra_col_delay, curTick());
816 
817  for (auto i = queue.begin(); i != queue.end() ; ++i) {
818  DRAMPacket* dram_pkt = *i;
819  const Bank& bank = dram_pkt->bankRef;
820  const Tick col_allowed_at = dram_pkt->isRead() ? bank.rdAllowedAt :
821  bank.wrAllowedAt;
822 
823  DPRINTF(DRAM, "%s checking packet in bank %d, row %d\n",
824  __func__, dram_pkt->bankRef.bank, dram_pkt->row);
825 
826  // check if rank is not doing a refresh and thus is available, if not,
827  // jump to the next packet
828  if (dram_pkt->rankRef.inRefIdleState()) {
829 
830  DPRINTF(DRAM,
831  "%s bank %d - Rank %d available\n", __func__,
832  dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
833 
834  // check if it is a row hit
835  if (bank.openRow == dram_pkt->row) {
836  // no additional rank-to-rank or same bank-group
837  // delays, or we switched read/write and might as well
838  // go for the row hit
839  if (col_allowed_at <= min_col_at) {
840  // FCFS within the hits, giving priority to
841  // commands that can issue seamlessly, without
842  // additional delay, such as same rank accesses
843  // and/or different bank-group accesses
844  DPRINTF(DRAM, "%s Seamless row buffer hit\n", __func__);
845  selected_pkt_it = i;
846  // no need to look through the remaining queue entries
847  break;
848  } else if (!found_hidden_bank && !found_prepped_pkt) {
849  // if we did not find a packet to a closed row that can
850  // issue the bank commands without incurring delay, and
851  // did not yet find a packet to a prepped row, remember
852  // the current one
853  selected_pkt_it = i;
854  found_prepped_pkt = true;
855  DPRINTF(DRAM, "%s Prepped row buffer hit\n", __func__);
856  }
857  } else if (!found_earliest_pkt) {
858  // if we have not initialised the bank status, do it
859  // now, and only once per scheduling decisions
860  if (!filled_earliest_banks) {
861  // determine entries with earliest bank delay
862  std::tie(earliest_banks, hidden_bank_prep) =
863  minBankPrep(queue, min_col_at);
864  filled_earliest_banks = true;
865  }
866 
867  // bank is amongst first available banks
868  // minBankPrep will give priority to packets that can
869  // issue seamlessly
870  if (bits(earliest_banks[dram_pkt->rank],
871  dram_pkt->bank, dram_pkt->bank)) {
872  found_earliest_pkt = true;
873  found_hidden_bank = hidden_bank_prep;
874 
875  // give priority to packets that can issue
876  // bank commands 'behind the scenes'
877  // any additional delay if any will be due to
878  // col-to-col command requirements
879  if (hidden_bank_prep || !found_prepped_pkt)
880  selected_pkt_it = i;
881  }
882  }
883  } else {
884  DPRINTF(DRAM, "%s bank %d - Rank %d not available\n", __func__,
885  dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
886  }
887  }
888 
889  if (selected_pkt_it == queue.end()) {
890  DPRINTF(DRAM, "%s no available ranks found\n", __func__);
891  }
892 
893  return selected_pkt_it;
894 }
895 
896 void
898 {
899  DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
900 
901  bool needsResponse = pkt->needsResponse();
902  // do the actual memory access which also turns the packet into a
903  // response
904  access(pkt);
905 
906  // turn packet around to go back to requester if response expected
907  if (needsResponse) {
908  // access already turned the packet into a response
909  assert(pkt->isResponse());
910  // response_time consumes the static latency and is charged also
911  // with headerDelay that takes into account the delay provided by
912  // the xbar and also the payloadDelay that takes into account the
913  // number of data beats.
914  Tick response_time = curTick() + static_latency + pkt->headerDelay +
915  pkt->payloadDelay;
916  // Here we reset the timing of the packet before sending it out.
917  pkt->headerDelay = pkt->payloadDelay = 0;
918 
919  // queue the packet in the response queue to be sent out after
920  // the static latency has passed
921  port.schedTimingResp(pkt, response_time);
922  } else {
923  // @todo the packet is going to be deleted, and the DRAMPacket
924  // is still having a pointer to it
925  pendingDelete.reset(pkt);
926  }
927 
928  DPRINTF(DRAM, "Done\n");
929 
930  return;
931 }
932 
933 void
935 {
936  auto it = burstTicks.begin();
937  while (it != burstTicks.end()) {
938  auto current_it = it++;
939  if (curTick() > *current_it) {
940  DPRINTF(DRAM, "Removing burstTick for %d\n", *current_it);
941  burstTicks.erase(current_it);
942  }
943  }
944 }
945 
946 Tick
948 {
949  // get tick aligned to burst window
950  Tick burst_offset = cmd_tick % burstDataCycles;
951  return (cmd_tick - burst_offset);
952 }
953 
954 Tick
956 {
957  // start with assumption that there is no contention on command bus
958  Tick cmd_at = cmd_tick;
959 
960  // get tick aligned to burst window
961  Tick burst_tick = getBurstWindow(cmd_tick);
962 
963  // verify that we have command bandwidth to issue the command
964  // if not, iterate over next window(s) until slot found
965  while (burstTicks.count(burst_tick) >= maxCommandsPerBurst) {
966  DPRINTF(DRAM, "Contention found on command bus at %d\n", burst_tick);
967  burst_tick += burstDataCycles;
968  cmd_at = burst_tick;
969  }
970 
971  // add command into burst window and return corresponding Tick
972  burstTicks.insert(burst_tick);
973  return cmd_at;
974 }
975 
976 Tick
977 DRAMCtrl::verifyMultiCmd(Tick cmd_tick, Tick max_multi_cmd_split)
978 {
979  // start with assumption that there is no contention on command bus
980  Tick cmd_at = cmd_tick;
981 
982  // get tick aligned to burst window
983  Tick burst_tick = getBurstWindow(cmd_tick);
984 
985  // Command timing requirements are from 2nd command
986  // Start with assumption that 2nd command will issue at cmd_at and
987  // find prior slot for 1st command to issue
988  // Given a maximum latency of max_multi_cmd_split between the commands,
989  // find the burst at the maximum latency prior to cmd_at
990  Tick burst_offset = 0;
991  Tick first_cmd_offset = cmd_tick % burstDataCycles;
992  while (max_multi_cmd_split > (first_cmd_offset + burst_offset)) {
993  burst_offset += burstDataCycles;
994  }
995  // get the earliest burst aligned address for first command
996  // ensure that the time does not go negative
997  Tick first_cmd_tick = burst_tick - std::min(burst_offset, burst_tick);
998 
999  // Can required commands issue?
1000  bool first_can_issue = false;
1001  bool second_can_issue = false;
1002  // verify that we have command bandwidth to issue the command(s)
1003  while (!first_can_issue || !second_can_issue) {
1004  bool same_burst = (burst_tick == first_cmd_tick);
1005  auto first_cmd_count = burstTicks.count(first_cmd_tick);
1006  auto second_cmd_count = same_burst ? first_cmd_count + 1 :
1007  burstTicks.count(burst_tick);
1008 
1009  first_can_issue = first_cmd_count < maxCommandsPerBurst;
1010  second_can_issue = second_cmd_count < maxCommandsPerBurst;
1011 
1012  if (!second_can_issue) {
1013  DPRINTF(DRAM, "Contention (cmd2) found on command bus at %d\n",
1014  burst_tick);
1015  burst_tick += burstDataCycles;
1016  cmd_at = burst_tick;
1017  }
1018 
1019  // Verify max_multi_cmd_split isn't violated when command 2 is shifted
1020  // If commands initially were issued in same burst, they are
1021  // now in consecutive bursts and can still issue B2B
1022  bool gap_violated = !same_burst &&
1023  ((burst_tick - first_cmd_tick) > max_multi_cmd_split);
1024 
1025  if (!first_can_issue || (!second_can_issue && gap_violated)) {
1026  DPRINTF(DRAM, "Contention (cmd1) found on command bus at %d\n",
1027  first_cmd_tick);
1028  first_cmd_tick += burstDataCycles;
1029  }
1030  }
1031 
1032  // Add command to burstTicks
1033  burstTicks.insert(burst_tick);
1034  burstTicks.insert(first_cmd_tick);
1035 
1036  return cmd_at;
1037 }
1038 
1039 void
1040 DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
1041  Tick act_tick, uint32_t row)
1042 {
1043  assert(rank_ref.actTicks.size() == activationLimit);
1044 
1045  // verify that we have command bandwidth to issue the activate
1046  // if not, shift to next burst window
1047  Tick act_at;
1048  if (twoCycleActivate)
1049  act_at = verifyMultiCmd(act_tick, tAAD);
1050  else
1051  act_at = verifySingleCmd(act_tick);
1052 
1053  DPRINTF(DRAM, "Activate at tick %d\n", act_at);
1054 
1055  // update the open row
1056  assert(bank_ref.openRow == Bank::NO_ROW);
1057  bank_ref.openRow = row;
1058 
1059  // start counting anew, this covers both the case when we
1060  // auto-precharged, and when this access is forced to
1061  // precharge
1062  bank_ref.bytesAccessed = 0;
1063  bank_ref.rowAccesses = 0;
1064 
1065  ++rank_ref.numBanksActive;
1066  assert(rank_ref.numBanksActive <= banksPerRank);
1067 
1068  DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
1069  bank_ref.bank, rank_ref.rank, act_at,
1070  ranks[rank_ref.rank]->numBanksActive);
1071 
1072  rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
1073  act_at));
1074 
1075  DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_at, tCK) -
1076  timeStampOffset, bank_ref.bank, rank_ref.rank);
1077 
1078  // The next access has to respect tRAS for this bank
1079  bank_ref.preAllowedAt = act_at + tRAS;
1080 
1081  // Respect the row-to-column command delay for both read and write cmds
1082  bank_ref.rdAllowedAt = std::max(act_at + tRCD, bank_ref.rdAllowedAt);
1083  bank_ref.wrAllowedAt = std::max(act_at + tRCD, bank_ref.wrAllowedAt);
1084 
1085  // start by enforcing tRRD
1086  for (int i = 0; i < banksPerRank; i++) {
1087  // next activate to any bank in this rank must not happen
1088  // before tRRD
1089  if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
1090  // bank group architecture requires longer delays between
1091  // ACT commands within the same bank group. Use tRRD_L
1092  // in this case
1093  rank_ref.banks[i].actAllowedAt = std::max(act_at + tRRD_L,
1094  rank_ref.banks[i].actAllowedAt);
1095  } else {
1096  // use shorter tRRD value when either
1097  // 1) bank group architecture is not supportted
1098  // 2) bank is in a different bank group
1099  rank_ref.banks[i].actAllowedAt = std::max(act_at + tRRD,
1100  rank_ref.banks[i].actAllowedAt);
1101  }
1102  }
1103 
1104  // next, we deal with tXAW, if the activation limit is disabled
1105  // then we directly schedule an activate power event
1106  if (!rank_ref.actTicks.empty()) {
1107  // sanity check
1108  if (rank_ref.actTicks.back() &&
1109  (act_at - rank_ref.actTicks.back()) < tXAW) {
1110  panic("Got %d activates in window %d (%llu - %llu) which "
1111  "is smaller than %llu\n", activationLimit, act_at -
1112  rank_ref.actTicks.back(), act_at,
1113  rank_ref.actTicks.back(), tXAW);
1114  }
1115 
1116  // shift the times used for the book keeping, the last element
1117  // (highest index) is the oldest one and hence the lowest value
1118  rank_ref.actTicks.pop_back();
1119 
1120  // record an new activation (in the future)
1121  rank_ref.actTicks.push_front(act_at);
1122 
1123  // cannot activate more than X times in time window tXAW, push the
1124  // next one (the X + 1'st activate) to be tXAW away from the
1125  // oldest in our window of X
1126  if (rank_ref.actTicks.back() &&
1127  (act_at - rank_ref.actTicks.back()) < tXAW) {
1128  DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
1129  "no earlier than %llu\n", activationLimit,
1130  rank_ref.actTicks.back() + tXAW);
1131  for (int j = 0; j < banksPerRank; j++)
1132  // next activate must not happen before end of window
1133  rank_ref.banks[j].actAllowedAt =
1134  std::max(rank_ref.actTicks.back() + tXAW,
1135  rank_ref.banks[j].actAllowedAt);
1136  }
1137  }
1138 
1139  // at the point when this activate takes place, make sure we
1140  // transition to the active power state
1141  if (!rank_ref.activateEvent.scheduled())
1142  schedule(rank_ref.activateEvent, act_at);
1143  else if (rank_ref.activateEvent.when() > act_at)
1144  // move it sooner in time
1145  reschedule(rank_ref.activateEvent, act_at);
1146 }
1147 
1148 void
1149 DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_tick,
1150  bool auto_or_preall, bool trace)
1151 {
1152  // make sure the bank has an open row
1153  assert(bank.openRow != Bank::NO_ROW);
1154 
1155  // sample the bytes per activate here since we are closing
1156  // the page
1158 
1159  bank.openRow = Bank::NO_ROW;
1160 
1161  Tick pre_at = pre_tick;
1162  if (auto_or_preall) {
1163  // no precharge allowed before this one
1164  bank.preAllowedAt = pre_at;
1165  } else {
1166  // Issuing an explicit PRE command
1167  // Verify that we have command bandwidth to issue the precharge
1168  // if not, shift to next burst window
1169  pre_at = verifySingleCmd(pre_tick);
1170  // enforce tPPD
1171  for (int i = 0; i < banksPerRank; i++) {
1172  rank_ref.banks[i].preAllowedAt = std::max(pre_at + tPPD,
1173  rank_ref.banks[i].preAllowedAt);
1174  }
1175  }
1176 
1177  Tick pre_done_at = pre_at + tRP;
1178 
1179  bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1180 
1181  assert(rank_ref.numBanksActive != 0);
1182  --rank_ref.numBanksActive;
1183 
1184  DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1185  "%d active\n", bank.bank, rank_ref.rank, pre_at,
1186  rank_ref.numBanksActive);
1187 
1188  if (trace) {
1189 
1190  rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1191  pre_at));
1192  DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1193  timeStampOffset, bank.bank, rank_ref.rank);
1194  }
1195 
1196  // if we look at the current number of active banks we might be
1197  // tempted to think the DRAM is now idle, however this can be
1198  // undone by an activate that is scheduled to happen before we
1199  // would have reached the idle state, so schedule an event and
1200  // rather check once we actually make it to the point in time when
1201  // the (last) precharge takes place
1202  if (!rank_ref.prechargeEvent.scheduled()) {
1203  schedule(rank_ref.prechargeEvent, pre_done_at);
1204  // New event, increment count
1205  ++rank_ref.outstandingEvents;
1206  } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1207  reschedule(rank_ref.prechargeEvent, pre_done_at);
1208  }
1209 }
1210 
1211 void
1213 {
1214  DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1215  dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1216 
1217  // first clean up the burstTick set, removing old entries
1218  // before adding new entries for next burst
1219  pruneBurstTick();
1220 
1221  // get the rank
1222  Rank& rank = dram_pkt->rankRef;
1223 
1224  // are we in or transitioning to a low-power state and have not scheduled
1225  // a power-up event?
1226  // if so, wake up from power down to issue RD/WR burst
1227  if (rank.inLowPowerState) {
1228  assert(rank.pwrState != PWR_SREF);
1229  rank.scheduleWakeUpEvent(tXP);
1230  }
1231 
1232  // get the bank
1233  Bank& bank = dram_pkt->bankRef;
1234 
1235  // for the state we need to track if it is a row hit or not
1236  bool row_hit = true;
1237 
1238  // Determine the access latency and update the bank state
1239  if (bank.openRow == dram_pkt->row) {
1240  // nothing to do
1241  } else {
1242  row_hit = false;
1243 
1244  // If there is a page open, precharge it.
1245  if (bank.openRow != Bank::NO_ROW) {
1246  prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1247  }
1248 
1249  // next we need to account for the delay in activating the
1250  // page
1251  Tick act_tick = std::max(bank.actAllowedAt, curTick());
1252 
1253  // Record the activation and deal with all the global timing
1254  // constraints caused be a new activation (tRRD and tXAW)
1255  activateBank(rank, bank, act_tick, dram_pkt->row);
1256  }
1257 
1258  // respect any constraints on the command (e.g. tRCD or tCCD)
1259  const Tick col_allowed_at = dram_pkt->isRead() ?
1260  bank.rdAllowedAt : bank.wrAllowedAt;
1261 
1262  // we need to wait until the bus is available before we can issue
1263  // the command; need minimum of tBURST between commands
1264  Tick cmd_at = std::max({col_allowed_at, nextBurstAt, curTick()});
1265 
1266  // verify that we have command bandwidth to issue the burst
1267  // if not, shift to next burst window
1268  if (dataClockSync && ((cmd_at - rank.lastBurstTick) > clkResyncDelay))
1269  cmd_at = verifyMultiCmd(cmd_at, tCK);
1270  else
1271  cmd_at = verifySingleCmd(cmd_at);
1272 
1273  // if we are interleaving bursts, ensure that
1274  // 1) we don't double interleave on next burst issue
1275  // 2) we are at an interleave boundary; if not, shift to next boundary
1276  Tick burst_gap = tBURST_MIN;
1277  if (burstInterleave) {
1278  if (cmd_at == (rank.lastBurstTick + tBURST_MIN)) {
1279  // already interleaving, push next command to end of full burst
1280  burst_gap = tBURST;
1281  } else if (cmd_at < (rank.lastBurstTick + tBURST)) {
1282  // not at an interleave boundary after bandwidth check
1283  // Shift command to tBURST boundary to avoid data contention
1284  // Command will remain in the same burstTicks window given that
1285  // tBURST is less than tBURST_MAX
1286  cmd_at = rank.lastBurstTick + tBURST;
1287  }
1288  }
1289  DPRINTF(DRAM, "Schedule RD/WR burst at tick %d\n", cmd_at);
1290 
1291  // update the packet ready time
1292  dram_pkt->readyTime = cmd_at + tCL + tBURST;
1293 
1294  rank.lastBurstTick = cmd_at;
1295 
1296  // update the time for the next read/write burst for each
1297  // bank (add a max with tCCD/tCCD_L/tCCD_L_WR here)
1298  Tick dly_to_rd_cmd;
1299  Tick dly_to_wr_cmd;
1300  for (int j = 0; j < ranksPerChannel; j++) {
1301  for (int i = 0; i < banksPerRank; i++) {
1302  // next burst to same bank group in this rank must not happen
1303  // before tCCD_L. Different bank group timing requirement is
1304  // tBURST; Add tCS for different ranks
1305  if (dram_pkt->rank == j) {
1306  if (bankGroupArch &&
1307  (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1308  // bank group architecture requires longer delays between
1309  // RD/WR burst commands to the same bank group.
1310  // tCCD_L is default requirement for same BG timing
1311  // tCCD_L_WR is required for write-to-write
1312  // Need to also take bus turnaround delays into account
1313  dly_to_rd_cmd = dram_pkt->isRead() ?
1314  tCCD_L : std::max(tCCD_L, wrToRdDlySameBG);
1315  dly_to_wr_cmd = dram_pkt->isRead() ?
1316  std::max(tCCD_L, rdToWrDlySameBG) :
1317  tCCD_L_WR;
1318  } else {
1319  // tBURST is default requirement for diff BG timing
1320  // Need to also take bus turnaround delays into account
1321  dly_to_rd_cmd = dram_pkt->isRead() ? burst_gap : wrToRdDly;
1322  dly_to_wr_cmd = dram_pkt->isRead() ? rdToWrDly : burst_gap;
1323  }
1324  } else {
1325  // different rank is by default in a different bank group and
1326  // doesn't require longer tCCD or additional RTW, WTR delays
1327  // Need to account for rank-to-rank switching with tCS
1328  dly_to_wr_cmd = rankToRankDly;
1329  dly_to_rd_cmd = rankToRankDly;
1330  }
1331  ranks[j]->banks[i].rdAllowedAt = std::max(cmd_at + dly_to_rd_cmd,
1332  ranks[j]->banks[i].rdAllowedAt);
1333  ranks[j]->banks[i].wrAllowedAt = std::max(cmd_at + dly_to_wr_cmd,
1334  ranks[j]->banks[i].wrAllowedAt);
1335  }
1336  }
1337 
1338  // Save rank of current access
1339  activeRank = dram_pkt->rank;
1340 
1341  // If this is a write, we also need to respect the write recovery
1342  // time before a precharge, in the case of a read, respect the
1343  // read to precharge constraint
1344  bank.preAllowedAt = std::max(bank.preAllowedAt,
1345  dram_pkt->isRead() ? cmd_at + tRTP :
1346  dram_pkt->readyTime + tWR);
1347 
1348  // increment the bytes accessed and the accesses per row
1349  bank.bytesAccessed += burstSize;
1350  ++bank.rowAccesses;
1351 
1352  // if we reached the max, then issue with an auto-precharge
1353  bool auto_precharge = pageMgmt == Enums::close ||
1355 
1356  // if we did not hit the limit, we might still want to
1357  // auto-precharge
1358  if (!auto_precharge &&
1359  (pageMgmt == Enums::open_adaptive ||
1360  pageMgmt == Enums::close_adaptive)) {
1361  // a twist on the open and close page policies:
1362  // 1) open_adaptive page policy does not blindly keep the
1363  // page open, but close it if there are no row hits, and there
1364  // are bank conflicts in the queue
1365  // 2) close_adaptive page policy does not blindly close the
1366  // page, but closes it only if there are no row hits in the queue.
1367  // In this case, only force an auto precharge when there
1368  // are no same page hits in the queue
1369  bool got_more_hits = false;
1370  bool got_bank_conflict = false;
1371 
1372  // either look at the read queue or write queue
1373  const std::vector<DRAMPacketQueue>& queue =
1374  dram_pkt->isRead() ? readQueue : writeQueue;
1375 
1376  for (uint8_t i = 0; i < numPriorities(); ++i) {
1377  auto p = queue[i].begin();
1378  // keep on looking until we find a hit or reach the end of the queue
1379  // 1) if a hit is found, then both open and close adaptive policies keep
1380  // the page open
1381  // 2) if no hit is found, got_bank_conflict is set to true if a bank
1382  // conflict request is waiting in the queue
1383  // 3) make sure we are not considering the packet that we are
1384  // currently dealing with
1385  while (!got_more_hits && p != queue[i].end()) {
1386  if (dram_pkt != (*p)) {
1387  bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1388  (dram_pkt->bank == (*p)->bank);
1389 
1390  bool same_row = dram_pkt->row == (*p)->row;
1391  got_more_hits |= same_rank_bank && same_row;
1392  got_bank_conflict |= same_rank_bank && !same_row;
1393  }
1394  ++p;
1395  }
1396 
1397  if (got_more_hits)
1398  break;
1399  }
1400 
1401  // auto pre-charge when either
1402  // 1) open_adaptive policy, we have not got any more hits, and
1403  // have a bank conflict
1404  // 2) close_adaptive policy and we have not got any more hits
1405  auto_precharge = !got_more_hits &&
1406  (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1407  }
1408 
1409  // DRAMPower trace command to be written
1410  std::string mem_cmd = dram_pkt->isRead() ? "RD" : "WR";
1411 
1412  // MemCommand required for DRAMPower library
1413  MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1414  MemCommand::WR;
1415 
1416  // Update bus state to reflect when previous command was issued
1417  nextBurstAt = cmd_at + burst_gap;
1418  DPRINTF(DRAM, "Access to %lld, ready at %lld next burst at %lld.\n",
1419  dram_pkt->addr, dram_pkt->readyTime, nextBurstAt);
1420 
1421  dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1422  cmd_at));
1423 
1424  DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1425  timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1426 
1427  // if this access should use auto-precharge, then we are
1428  // closing the row after the read/write burst
1429  if (auto_precharge) {
1430  // if auto-precharge push a PRE command at the correct tick to the
1431  // list used by DRAMPower library to calculate power
1432  prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt),
1433  true);
1434 
1435  DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1436  }
1437 
1438  // Update the minimum timing between the requests, this is a
1439  // conservative estimate of when we have to schedule the next
1440  // request to not introduce any unecessary bubbles. In most cases
1441  // we will wake up sooner than we have to.
1442  nextReqTime = nextBurstAt - (tRP + tRCD);
1443 
1444  // Update the stats and schedule the next request
1445  if (dram_pkt->isRead()) {
1446  ++readsThisTime;
1447  if (row_hit)
1448  stats.readRowHits++;
1450  stats.perBankRdBursts[dram_pkt->bankId]++;
1451 
1452  // Update latency stats
1453  stats.totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1454  stats.masterReadTotalLat[dram_pkt->masterId()] +=
1455  dram_pkt->readyTime - dram_pkt->entryTime;
1456 
1457  stats.totBusLat += tBURST;
1458  stats.totQLat += cmd_at - dram_pkt->entryTime;
1459  stats.masterReadBytes[dram_pkt->masterId()] += dram_pkt->size;
1460  } else {
1461  ++writesThisTime;
1462  if (row_hit)
1463  stats.writeRowHits++;
1465  stats.perBankWrBursts[dram_pkt->bankId]++;
1466  stats.masterWriteBytes[dram_pkt->masterId()] += dram_pkt->size;
1467  stats.masterWriteTotalLat[dram_pkt->masterId()] +=
1468  dram_pkt->readyTime - dram_pkt->entryTime;
1469  }
1470 }
1471 
1472 void
1474 {
1475  // transition is handled by QoS algorithm if enabled
1476  if (turnPolicy) {
1477  // select bus state - only done if QoS algorithms are in use
1479  }
1480 
1481  // detect bus state change
1482  bool switched_cmd_type = (busState != busStateNext);
1483  // record stats
1485 
1486  DPRINTF(DRAM, "QoS Turnarounds selected state %s %s\n",
1487  (busState==MemCtrl::READ)?"READ":"WRITE",
1488  switched_cmd_type?"[turnaround triggered]":"");
1489 
1490  if (switched_cmd_type) {
1491  if (busState == READ) {
1492  DPRINTF(DRAM,
1493  "Switching to writes after %d reads with %d reads "
1494  "waiting\n", readsThisTime, totalReadQueueSize);
1496  readsThisTime = 0;
1497  } else {
1498  DPRINTF(DRAM,
1499  "Switching to reads after %d writes with %d writes "
1500  "waiting\n", writesThisTime, totalWriteQueueSize);
1502  writesThisTime = 0;
1503  }
1504  }
1505 
1506  // updates current state
1508 
1509  // check ranks for refresh/wakeup - uses busStateNext, so done after turnaround
1510  // decisions
1511  int busyRanks = 0;
1512  for (auto r : ranks) {
1513  if (!r->inRefIdleState()) {
1514  if (r->pwrState != PWR_SREF) {
1515  // rank is busy refreshing
1516  DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1517  busyRanks++;
1518 
1519  // let the rank know that if it was waiting to drain, it
1520  // is now done and ready to proceed
1521  r->checkDrainDone();
1522  }
1523 
1524  // check if we were in self-refresh and haven't started
1525  // to transition out
1526  if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1527  DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1528  // if we have commands queued to this rank and we don't have
1529  // a minimum number of active commands enqueued,
1530  // exit self-refresh
1531  if (r->forceSelfRefreshExit()) {
1532  DPRINTF(DRAMState, "rank %d was in self refresh and"
1533  " should wake up\n", r->rank);
1534  //wake up from self-refresh
1535  r->scheduleWakeUpEvent(tXS);
1536  // things are brought back into action once a refresh is
1537  // performed after self-refresh
1538  // continue with selection for other ranks
1539  }
1540  }
1541  }
1542  }
1543 
1544  if (busyRanks == ranksPerChannel) {
1545  // if all ranks are refreshing wait for them to finish
1546  // and stall this state machine without taking any further
1547  // action, and do not schedule a new nextReqEvent
1548  return;
1549  }
1550 
1551  // when we get here it is either a read or a write
1552  if (busState == READ) {
1553 
1554  // track if we should switch or not
1555  bool switch_to_writes = false;
1556 
1557  if (totalReadQueueSize == 0) {
1558  // In the case there is no read request to go next,
1559  // trigger writes if we have passed the low threshold (or
1560  // if we are draining)
1561  if (!(totalWriteQueueSize == 0) &&
1564 
1565  DPRINTF(DRAM, "Switching to writes due to read queue empty\n");
1566  switch_to_writes = true;
1567  } else {
1568  // check if we are drained
1569  // not done draining until in PWR_IDLE state
1570  // ensuring all banks are closed and
1571  // have exited low power states
1572  if (drainState() == DrainState::Draining &&
1573  respQueue.empty() && allRanksDrained()) {
1574 
1575  DPRINTF(Drain, "DRAM controller done draining\n");
1576  signalDrainDone();
1577  }
1578 
1579  // nothing to do, not even any point in scheduling an
1580  // event for the next request
1581  return;
1582  }
1583  } else {
1584 
1585  bool read_found = false;
1586  DRAMPacketQueue::iterator to_read;
1587  uint8_t prio = numPriorities();
1588 
1589  for (auto queue = readQueue.rbegin();
1590  queue != readQueue.rend(); ++queue) {
1591 
1592  prio--;
1593 
1594  DPRINTF(QOS,
1595  "DRAM controller checking READ queue [%d] priority [%d elements]\n",
1596  prio, queue->size());
1597 
1598  // Figure out which read request goes next
1599  // If we are changing command type, incorporate the minimum
1600  // bus turnaround delay which will be tCS (different rank) case
1601  to_read = chooseNext((*queue), switched_cmd_type ? tCS : 0);
1602 
1603  if (to_read != queue->end()) {
1604  // candidate read found
1605  read_found = true;
1606  break;
1607  }
1608  }
1609 
1610  // if no read to an available rank is found then return
1611  // at this point. There could be writes to the available ranks
1612  // which are above the required threshold. However, to
1613  // avoid adding more complexity to the code, return and wait
1614  // for a refresh event to kick things into action again.
1615  if (!read_found) {
1616  DPRINTF(DRAM, "No Reads Found - exiting\n");
1617  return;
1618  }
1619 
1620  auto dram_pkt = *to_read;
1621 
1622  assert(dram_pkt->rankRef.inRefIdleState());
1623 
1624  doDRAMAccess(dram_pkt);
1625 
1626  // Every respQueue which will generate an event, increment count
1627  ++dram_pkt->rankRef.outstandingEvents;
1628  // sanity check
1629  assert(dram_pkt->size <= burstSize);
1630  assert(dram_pkt->readyTime >= curTick());
1631 
1632  // log the response
1633  logResponse(MemCtrl::READ, (*to_read)->masterId(),
1634  dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
1635  dram_pkt->readyTime - dram_pkt->entryTime);
1636 
1637 
1638  // Insert into response queue. It will be sent back to the
1639  // requester at its readyTime
1640  if (respQueue.empty()) {
1641  assert(!respondEvent.scheduled());
1642  schedule(respondEvent, dram_pkt->readyTime);
1643  } else {
1644  assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1645  assert(respondEvent.scheduled());
1646  }
1647 
1648  respQueue.push_back(dram_pkt);
1649 
1650  // we have so many writes that we have to transition
1652  switch_to_writes = true;
1653  }
1654 
1655  // remove the request from the queue - the iterator is no longer valid .
1656  readQueue[dram_pkt->qosValue()].erase(to_read);
1657  }
1658 
1659  // switching to writes, either because the read queue is empty
1660  // and the writes have passed the low threshold (or we are
1661  // draining), or because the writes hit the hight threshold
1662  if (switch_to_writes) {
1663  // transition to writing
1664  busStateNext = WRITE;
1665  }
1666  } else {
1667 
1668  bool write_found = false;
1669  DRAMPacketQueue::iterator to_write;
1670  uint8_t prio = numPriorities();
1671 
1672  for (auto queue = writeQueue.rbegin();
1673  queue != writeQueue.rend(); ++queue) {
1674 
1675  prio--;
1676 
1677  DPRINTF(QOS,
1678  "DRAM controller checking WRITE queue [%d] priority [%d elements]\n",
1679  prio, queue->size());
1680 
1681  // If we are changing command type, incorporate the minimum
1682  // bus turnaround delay
1683  to_write = chooseNext((*queue),
1684  switched_cmd_type ? std::min(tRTW, tCS) : 0);
1685 
1686  if (to_write != queue->end()) {
1687  write_found = true;
1688  break;
1689  }
1690  }
1691 
1692  // if there are no writes to a rank that is available to service
1693  // requests (i.e. rank is in refresh idle state) are found then
1694  // return. There could be reads to the available ranks. However, to
1695  // avoid adding more complexity to the code, return at this point and
1696  // wait for a refresh event to kick things into action again.
1697  if (!write_found) {
1698  DPRINTF(DRAM, "No Writes Found - exiting\n");
1699  return;
1700  }
1701 
1702  auto dram_pkt = *to_write;
1703 
1704  assert(dram_pkt->rankRef.inRefIdleState());
1705  // sanity check
1706  assert(dram_pkt->size <= burstSize);
1707 
1708  doDRAMAccess(dram_pkt);
1709 
1710  // removed write from queue, decrement count
1711  --dram_pkt->rankRef.writeEntries;
1712 
1713  // Schedule write done event to decrement event count
1714  // after the readyTime has been reached
1715  // Only schedule latest write event to minimize events
1716  // required; only need to ensure that final event scheduled covers
1717  // the time that writes are outstanding and bus is active
1718  // to holdoff power-down entry events
1719  if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1720  schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1721  // New event, increment count
1722  ++dram_pkt->rankRef.outstandingEvents;
1723 
1724  } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1725  dram_pkt->readyTime) {
1726 
1727  reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1728  }
1729 
1730  isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1731 
1732  // log the response
1733  logResponse(MemCtrl::WRITE, dram_pkt->masterId(),
1734  dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
1735  dram_pkt->readyTime - dram_pkt->entryTime);
1736 
1737 
1738  // remove the request from the queue - the iterator is no longer valid
1739  writeQueue[dram_pkt->qosValue()].erase(to_write);
1740 
1741  delete dram_pkt;
1742 
1743  // If we emptied the write queue, or got sufficiently below the
1744  // threshold (using the minWritesPerSwitch as the hysteresis) and
1745  // are not draining, or we have reads waiting and have done enough
1746  // writes, then switch to reads.
1747  bool below_threshold =
1749 
1750  if (totalWriteQueueSize == 0 ||
1751  (below_threshold && drainState() != DrainState::Draining) ||
1753 
1754  // turn the bus back around for reads again
1755  busStateNext = READ;
1756 
1757  // note that the we switch back to reads also in the idle
1758  // case, which eventually will check for any draining and
1759  // also pause any further scheduling if there is really
1760  // nothing to do
1761  }
1762  }
1763  // It is possible that a refresh to another rank kicks things back into
1764  // action before reaching this point.
1765  if (!nextReqEvent.scheduled())
1766  schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1767 
1768  // If there is space available and we have writes waiting then let
1769  // them retry. This is done here to ensure that the retry does not
1770  // cause a nextReqEvent to be scheduled before we do so as part of
1771  // the next request processing
1773  retryWrReq = false;
1774  port.sendRetryReq();
1775  }
1776 }
1777 
1778 pair<vector<uint32_t>, bool>
1780  Tick min_col_at) const
1781 {
1782  Tick min_act_at = MaxTick;
1783  vector<uint32_t> bank_mask(ranksPerChannel, 0);
1784 
1785  // latest Tick for which ACT can occur without incurring additoinal
1786  // delay on the data bus
1787  const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1788 
1789  // Flag condition when burst can issue back-to-back with previous burst
1790  bool found_seamless_bank = false;
1791 
1792  // Flag condition when bank can be opened without incurring additional
1793  // delay on the data bus
1794  bool hidden_bank_prep = false;
1795 
1796  // determine if we have queued transactions targetting the
1797  // bank in question
1798  vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1799  for (const auto& p : queue) {
1800  if (p->rankRef.inRefIdleState())
1801  got_waiting[p->bankId] = true;
1802  }
1803 
1804  // Find command with optimal bank timing
1805  // Will prioritize commands that can issue seamlessly.
1806  for (int i = 0; i < ranksPerChannel; i++) {
1807  for (int j = 0; j < banksPerRank; j++) {
1808  uint16_t bank_id = i * banksPerRank + j;
1809 
1810  // if we have waiting requests for the bank, and it is
1811  // amongst the first available, update the mask
1812  if (got_waiting[bank_id]) {
1813  // make sure this rank is not currently refreshing.
1814  assert(ranks[i]->inRefIdleState());
1815  // simplistic approximation of when the bank can issue
1816  // an activate, ignoring any rank-to-rank switching
1817  // cost in this calculation
1818  Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1819  std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1820  std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1821 
1822  // When is the earliest the R/W burst can issue?
1823  const Tick col_allowed_at = (busState == READ) ?
1824  ranks[i]->banks[j].rdAllowedAt :
1825  ranks[i]->banks[j].wrAllowedAt;
1826  Tick col_at = std::max(col_allowed_at, act_at + tRCD);
1827 
1828  // bank can issue burst back-to-back (seamlessly) with
1829  // previous burst
1830  bool new_seamless_bank = col_at <= min_col_at;
1831 
1832  // if we found a new seamless bank or we have no
1833  // seamless banks, and got a bank with an earlier
1834  // activate time, it should be added to the bit mask
1835  if (new_seamless_bank ||
1836  (!found_seamless_bank && act_at <= min_act_at)) {
1837  // if we did not have a seamless bank before, and
1838  // we do now, reset the bank mask, also reset it
1839  // if we have not yet found a seamless bank and
1840  // the activate time is smaller than what we have
1841  // seen so far
1842  if (!found_seamless_bank &&
1843  (new_seamless_bank || act_at < min_act_at)) {
1844  std::fill(bank_mask.begin(), bank_mask.end(), 0);
1845  }
1846 
1847  found_seamless_bank |= new_seamless_bank;
1848 
1849  // ACT can occur 'behind the scenes'
1850  hidden_bank_prep = act_at <= hidden_act_max;
1851 
1852  // set the bit corresponding to the available bank
1853  replaceBits(bank_mask[i], j, j, 1);
1854  min_act_at = act_at;
1855  }
1856  }
1857  }
1858  }
1859 
1860  return make_pair(bank_mask, hidden_bank_prep);
1861 }
1862 
1863 DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
1864  : EventManager(&_memory), memory(_memory),
1865  pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1866  pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1867  refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
1868  readEntries(0), writeEntries(0), outstandingEvents(0),
1869  wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
1870  numBanksActive(0), actTicks(_p->activation_limit, 0), lastBurstTick(0),
1871  writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
1872  activateEvent([this]{ processActivateEvent(); }, name()),
1873  prechargeEvent([this]{ processPrechargeEvent(); }, name()),
1874  refreshEvent([this]{ processRefreshEvent(); }, name()),
1875  powerEvent([this]{ processPowerEvent(); }, name()),
1876  wakeUpEvent([this]{ processWakeUpEvent(); }, name()),
1877  stats(_memory, *this)
1878 {
1879  for (int b = 0; b < _p->banks_per_rank; b++) {
1880  banks[b].bank = b;
1881  // GDDR addressing of banks to BG is linear.
1882  // Here we assume that all DRAM generations address bank groups as
1883  // follows:
1884  if (_p->bank_groups_per_rank > 0) {
1885  // Simply assign lower bits to bank group in order to
1886  // rotate across bank groups as banks are incremented
1887  // e.g. with 4 banks per bank group and 16 banks total:
1888  // banks 0,4,8,12 are in bank group 0
1889  // banks 1,5,9,13 are in bank group 1
1890  // banks 2,6,10,14 are in bank group 2
1891  // banks 3,7,11,15 are in bank group 3
1892  banks[b].bankgr = b % _p->bank_groups_per_rank;
1893  } else {
1894  // No bank groups; simply assign to bank number
1895  banks[b].bankgr = b;
1896  }
1897  }
1898 }
1899 
1900 void
1902 {
1903  assert(ref_tick > curTick());
1904 
1905  pwrStateTick = curTick();
1906 
1907  // kick off the refresh, and give ourselves enough time to
1908  // precharge
1909  schedule(refreshEvent, ref_tick);
1910 }
1911 
1912 void
1914 {
1916 
1917  // Update the stats
1918  updatePowerStats();
1919 
1920  // don't automatically transition back to LP state after next REF
1922 }
1923 
1924 bool
1926 {
1927  // check commmands in Q based on current bus direction
1928  bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1929  || ((memory.busStateNext == WRITE) &&
1930  (writeEntries == 0));
1931  return no_queued_cmds;
1932 }
1933 
1934 void
1936 {
1937  // if this rank was waiting to drain it is now able to proceed to
1938  // precharge
1939  if (refreshState == REF_DRAIN) {
1940  DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1941 
1943 
1944  // hand control back to the refresh event loop
1946  }
1947 }
1948 
1949 void
1951 {
1952  // at the moment sort the list of commands and update the counters
1953  // for DRAMPower libray when doing a refresh
1954  sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1955 
1956  auto next_iter = cmdList.begin();
1957  // push to commands to DRAMPower
1958  for ( ; next_iter != cmdList.end() ; ++next_iter) {
1959  Command cmd = *next_iter;
1960  if (cmd.timeStamp <= curTick()) {
1961  // Move all commands at or before curTick to DRAMPower
1962  power.powerlib.doCommand(cmd.type, cmd.bank,
1963  divCeil(cmd.timeStamp, memory.tCK) -
1964  memory.timeStampOffset);
1965  } else {
1966  // done - found all commands at or before curTick()
1967  // next_iter references the 1st command after curTick
1968  break;
1969  }
1970  }
1971  // reset cmdList to only contain commands after curTick
1972  // if there are no commands after curTick, updated cmdList will be empty
1973  // in this case, next_iter is cmdList.end()
1974  cmdList.assign(next_iter, cmdList.end());
1975 }
1976 
1977 void
1979 {
1980  // we should transition to the active state as soon as any bank is active
1981  if (pwrState != PWR_ACT)
1982  // note that at this point numBanksActive could be back at
1983  // zero again due to a precharge scheduled in the future
1985 }
1986 
1987 void
1989 {
1990  // counter should at least indicate one outstanding request
1991  // for this precharge
1992  assert(outstandingEvents > 0);
1993  // precharge complete, decrement count
1995 
1996  // if we reached zero, then special conditions apply as we track
1997  // if all banks are precharged for the power models
1998  if (numBanksActive == 0) {
1999  // no reads to this rank in the Q and no pending
2000  // RD/WR or refresh commands
2001  if (isQueueEmpty() && outstandingEvents == 0 &&
2002  memory.enableDRAMPowerdown) {
2003  // should still be in ACT state since bank still open
2004  assert(pwrState == PWR_ACT);
2005 
2006  // All banks closed - switch to precharge power down state.
2007  DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
2008  rank, curTick());
2010  } else {
2011  // we should transition to the idle state when the last bank
2012  // is precharged
2014  }
2015  }
2016 }
2017 
2018 void
2020 {
2021  // counter should at least indicate one outstanding request
2022  // for this write
2023  assert(outstandingEvents > 0);
2024  // Write transfer on bus has completed
2025  // decrement per rank counter
2027 }
2028 
2029 void
2031 {
2032  // when first preparing the refresh, remember when it was due
2033  if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
2034  // remember when the refresh is due
2035  refreshDueAt = curTick();
2036 
2037  // proceed to drain
2039 
2040  // make nonzero while refresh is pending to ensure
2041  // power down and self-refresh are not entered
2043 
2044  DPRINTF(DRAM, "Refresh due\n");
2045  }
2046 
2047  // let any scheduled read or write to the same rank go ahead,
2048  // after which it will
2049  // hand control back to this event loop
2050  if (refreshState == REF_DRAIN) {
2051  // if a request is at the moment being handled and this request is
2052  // accessing the current rank then wait for it to finish
2053  if ((rank == memory.activeRank)
2054  && (memory.nextReqEvent.scheduled())) {
2055  // hand control over to the request loop until it is
2056  // evaluated next
2057  DPRINTF(DRAM, "Refresh awaiting draining\n");
2058 
2059  return;
2060  } else {
2062  }
2063  }
2064 
2065  // at this point, ensure that rank is not in a power-down state
2066  if (refreshState == REF_PD_EXIT) {
2067  // if rank was sleeping and we have't started exit process,
2068  // wake-up for refresh
2069  if (inLowPowerState) {
2070  DPRINTF(DRAM, "Wake Up for refresh\n");
2071  // save state and return after refresh completes
2073  return;
2074  } else {
2076  }
2077  }
2078 
2079  // at this point, ensure that all banks are precharged
2080  if (refreshState == REF_PRE) {
2081  // precharge any active bank
2082  if (numBanksActive != 0) {
2083  // at the moment, we use a precharge all even if there is
2084  // only a single bank open
2085  DPRINTF(DRAM, "Precharging all\n");
2086 
2087  // first determine when we can precharge
2088  Tick pre_at = curTick();
2089 
2090  for (auto &b : banks) {
2091  // respect both causality and any existing bank
2092  // constraints, some banks could already have a
2093  // (auto) precharge scheduled
2094  pre_at = std::max(b.preAllowedAt, pre_at);
2095  }
2096 
2097  // make sure all banks per rank are precharged, and for those that
2098  // already are, update their availability
2099  Tick act_allowed_at = pre_at + memory.tRP;
2100 
2101  for (auto &b : banks) {
2102  if (b.openRow != Bank::NO_ROW) {
2103  memory.prechargeBank(*this, b, pre_at, true, false);
2104  } else {
2105  b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
2106  b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
2107  }
2108  }
2109 
2110  // precharge all banks in rank
2111  cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
2112 
2113  DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
2114  divCeil(pre_at, memory.tCK) -
2115  memory.timeStampOffset, rank);
2116  } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) {
2117  // Banks are closed, have transitioned to IDLE state, and
2118  // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
2119  DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
2120 
2121  // go ahead and kick the power state machine into gear since
2122  // we are already idle
2124  } else {
2125  // banks state is closed but haven't transitioned pwrState to IDLE
2126  // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
2127  // should have outstanding precharge or read response event
2128  assert(prechargeEvent.scheduled() ||
2129  memory.respondEvent.scheduled());
2130  // will start refresh when pwrState transitions to IDLE
2131  }
2132 
2133  assert(numBanksActive == 0);
2134 
2135  // wait for all banks to be precharged or read to complete
2136  // When precharge commands are done, power state machine will
2137  // transition to the idle state, and automatically move to a
2138  // refresh, at that point it will also call this method to get
2139  // the refresh event loop going again
2140  // Similarly, when read response completes, if all banks are
2141  // precharged, will call this method to get loop re-started
2142  return;
2143  }
2144 
2145  // last but not least we perform the actual refresh
2146  if (refreshState == REF_START) {
2147  // should never get here with any banks active
2148  assert(numBanksActive == 0);
2149  assert(pwrState == PWR_REF);
2150 
2151  Tick ref_done_at = curTick() + memory.tRFC;
2152 
2153  for (auto &b : banks) {
2154  b.actAllowedAt = ref_done_at;
2155  }
2156 
2157  // at the moment this affects all ranks
2158  cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
2159 
2160  // Update the stats
2161  updatePowerStats();
2162 
2163  DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
2164  memory.timeStampOffset, rank);
2165 
2166  // Update for next refresh
2167  refreshDueAt += memory.tREFI;
2168 
2169  // make sure we did not wait so long that we cannot make up
2170  // for it
2171  if (refreshDueAt < ref_done_at) {
2172  fatal("Refresh was delayed so long we cannot catch up\n");
2173  }
2174 
2175  // Run the refresh and schedule event to transition power states
2176  // when refresh completes
2178  schedule(refreshEvent, ref_done_at);
2179  return;
2180  }
2181 
2182  if (refreshState == REF_RUN) {
2183  // should never get here with any banks active
2184  assert(numBanksActive == 0);
2185  assert(pwrState == PWR_REF);
2186 
2187  assert(!powerEvent.scheduled());
2188 
2189  if ((memory.drainState() == DrainState::Draining) ||
2190  (memory.drainState() == DrainState::Drained)) {
2191  // if draining, do not re-enter low-power mode.
2192  // simply go to IDLE and wait
2194  } else {
2195  // At the moment, we sleep when the refresh ends and wait to be
2196  // woken up again if previously in a low-power state.
2197  if (pwrStatePostRefresh != PWR_IDLE) {
2198  // power State should be power Refresh
2199  assert(pwrState == PWR_REF);
2200  DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
2201  "power state %d before refreshing\n", rank,
2204 
2205  // Force PRE power-down if there are no outstanding commands
2206  // in Q after refresh.
2207  } else if (isQueueEmpty() && memory.enableDRAMPowerdown) {
2208  // still have refresh event outstanding but there should
2209  // be no other events outstanding
2210  assert(outstandingEvents == 1);
2211  DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
2212  " in a low power state before refreshing\n", rank);
2214 
2215  } else {
2216  // move to the idle power state once the refresh is done, this
2217  // will also move the refresh state machine to the refresh
2218  // idle state
2220  }
2221  }
2222 
2223  // At this point, we have completed the current refresh.
2224  // In the SREF bypass case, we do not get to this state in the
2225  // refresh STM and therefore can always schedule next event.
2226  // Compensate for the delay in actually performing the refresh
2227  // when scheduling the next one
2229 
2230  DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
2231  " at %llu\n", curTick(), refreshDueAt);
2232  }
2233 }
2234 
2235 void
2237 {
2238  // respect causality
2239  assert(tick >= curTick());
2240 
2241  if (!powerEvent.scheduled()) {
2242  DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
2243  tick, pwr_state);
2244 
2245  // insert the new transition
2246  pwrStateTrans = pwr_state;
2247 
2248  schedule(powerEvent, tick);
2249  } else {
2250  panic("Scheduled power event at %llu to state %d, "
2251  "with scheduled event at %llu to %d\n", tick, pwr_state,
2253  }
2254 }
2255 
2256 void
2258 {
2259  // if low power state is active low, schedule to active low power state.
2260  // in reality tCKE is needed to enter active low power. This is neglected
2261  // here and could be added in the future.
2262  if (pwr_state == PWR_ACT_PDN) {
2263  schedulePowerEvent(pwr_state, tick);
2264  // push command to DRAMPower
2265  cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2266  DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2267  memory.tCK) - memory.timeStampOffset, rank);
2268  } else if (pwr_state == PWR_PRE_PDN) {
2269  // if low power state is precharge low, schedule to precharge low
2270  // power state. In reality tCKE is needed to enter active low power.
2271  // This is neglected here.
2272  schedulePowerEvent(pwr_state, tick);
2273  //push Command to DRAMPower
2274  cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2275  DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2276  memory.tCK) - memory.timeStampOffset, rank);
2277  } else if (pwr_state == PWR_REF) {
2278  // if a refresh just occurred
2279  // transition to PRE_PDN now that all banks are closed
2280  // precharge power down requires tCKE to enter. For simplicity
2281  // this is not considered.
2283  //push Command to DRAMPower
2284  cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2285  DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2286  memory.tCK) - memory.timeStampOffset, rank);
2287  } else if (pwr_state == PWR_SREF) {
2288  // should only enter SREF after PRE-PD wakeup to do a refresh
2289  assert(pwrStatePostRefresh == PWR_PRE_PDN);
2290  // self refresh requires time tCKESR to enter. For simplicity,
2291  // this is not considered.
2293  // push Command to DRAMPower
2294  cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2295  DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2296  memory.tCK) - memory.timeStampOffset, rank);
2297  }
2298  // Ensure that we don't power-down and back up in same tick
2299  // Once we commit to PD entry, do it and wait for at least 1tCK
2300  // This could be replaced with tCKE if/when that is added to the model
2301  wakeUpAllowedAt = tick + memory.tCK;
2302 
2303  // Transitioning to a low power state, set flag
2304  inLowPowerState = true;
2305 }
2306 
2307 void
2309 {
2310  Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2311 
2312  DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2313  rank, wake_up_tick);
2314 
2315  // if waking for refresh, hold previous state
2316  // else reset state back to IDLE
2317  if (refreshState == REF_PD_EXIT) {
2319  } else {
2320  // don't automatically transition back to LP state after next REF
2322  }
2323 
2324  // schedule wake-up with event to ensure entry has completed before
2325  // we try to wake-up
2326  schedule(wakeUpEvent, wake_up_tick);
2327 
2328  for (auto &b : banks) {
2329  // respect both causality and any existing bank
2330  // constraints, some banks could already have a
2331  // (auto) precharge scheduled
2332  b.wrAllowedAt = std::max(wake_up_tick + exit_delay, b.wrAllowedAt);
2333  b.rdAllowedAt = std::max(wake_up_tick + exit_delay, b.rdAllowedAt);
2334  b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2335  b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2336  }
2337  // Transitioning out of low power state, clear flag
2338  inLowPowerState = false;
2339 
2340  // push to DRAMPower
2341  // use pwrStateTrans for cases where we have a power event scheduled
2342  // to enter low power that has not yet been processed
2343  if (pwrStateTrans == PWR_ACT_PDN) {
2344  cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2345  DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2346  memory.tCK) - memory.timeStampOffset, rank);
2347 
2348  } else if (pwrStateTrans == PWR_PRE_PDN) {
2349  cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2350  DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2351  memory.tCK) - memory.timeStampOffset, rank);
2352  } else if (pwrStateTrans == PWR_SREF) {
2353  cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2354  DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2355  memory.tCK) - memory.timeStampOffset, rank);
2356  }
2357 }
2358 
2359 void
2361 {
2362  // Should be in a power-down or self-refresh state
2363  assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2364  (pwrState == PWR_SREF));
2365 
2366  // Check current state to determine transition state
2367  if (pwrState == PWR_ACT_PDN) {
2368  // banks still open, transition to PWR_ACT
2370  } else {
2371  // transitioning from a precharge power-down or self-refresh state
2372  // banks are closed - transition to PWR_IDLE
2374  }
2375 }
2376 
2377 void
2379 {
2380  assert(curTick() >= pwrStateTick);
2381  // remember where we were, and for how long
2382  Tick duration = curTick() - pwrStateTick;
2383  PowerState prev_state = pwrState;
2384 
2385  // update the accounting
2386  stats.memoryStateTime[prev_state] += duration;
2387 
2388  // track to total idle time
2389  if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2390  (prev_state == PWR_SREF)) {
2391  stats.totalIdleTime += duration;
2392  }
2393 
2395  pwrStateTick = curTick();
2396 
2397  // if rank was refreshing, make sure to start scheduling requests again
2398  if (prev_state == PWR_REF) {
2399  // bus IDLED prior to REF
2400  // counter should be one for refresh command only
2401  assert(outstandingEvents == 1);
2402  // REF complete, decrement count and go back to IDLE
2405 
2406  DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2407  // if moving back to power-down after refresh
2408  if (pwrState != PWR_IDLE) {
2409  assert(pwrState == PWR_PRE_PDN);
2410  DPRINTF(DRAMState, "Switching to power down state after refreshing"
2411  " rank %d at %llu tick\n", rank, curTick());
2412  }
2413 
2414  // completed refresh event, ensure next request is scheduled
2415  if (!memory.nextReqEvent.scheduled()) {
2416  DPRINTF(DRAM, "Scheduling next request after refreshing"
2417  " rank %d\n", rank);
2418  schedule(memory.nextReqEvent, curTick());
2419  }
2420  }
2421 
2422  if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) {
2423  // have exited ACT PD
2424  assert(prev_state == PWR_ACT_PDN);
2425 
2426  // go back to REF event and close banks
2429  } else if (pwrState == PWR_IDLE) {
2430  DPRINTF(DRAMState, "All banks precharged\n");
2431  if (prev_state == PWR_SREF) {
2432  // set refresh state to REF_SREF_EXIT, ensuring inRefIdleState
2433  // continues to return false during tXS after SREF exit
2434  // Schedule a refresh which kicks things back into action
2435  // when it finishes
2437  schedule(refreshEvent, curTick() + memory.tXS);
2438  } else {
2439  // if we have a pending refresh, and are now moving to
2440  // the idle state, directly transition to, or schedule refresh
2441  if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2442  // ensure refresh is restarted only after final PRE command.
2443  // do not restart refresh if controller is in an intermediate
2444  // state, after PRE_PDN exit, when banks are IDLE but an
2445  // ACT is scheduled.
2446  if (!activateEvent.scheduled()) {
2447  // there should be nothing waiting at this point
2448  assert(!powerEvent.scheduled());
2449  if (refreshState == REF_PD_EXIT) {
2450  // exiting PRE PD, will be in IDLE until tXP expires
2451  // and then should transition to PWR_REF state
2452  assert(prev_state == PWR_PRE_PDN);
2454  } else if (refreshState == REF_PRE) {
2455  // can directly move to PWR_REF state and proceed below
2456  pwrState = PWR_REF;
2457  }
2458  } else {
2459  // must have PRE scheduled to transition back to IDLE
2460  // and re-kick off refresh
2461  assert(prechargeEvent.scheduled());
2462  }
2463  }
2464  }
2465  }
2466 
2467  // transition to the refresh state and re-start refresh process
2468  // refresh state machine will schedule the next power state transition
2469  if (pwrState == PWR_REF) {
2470  // completed final PRE for refresh or exiting power-down
2471  assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2472 
2473  // exited PRE PD for refresh, with no pending commands
2474  // bypass auto-refresh and go straight to SREF, where memory
2475  // will issue refresh immediately upon entry
2477  (memory.drainState() != DrainState::Draining) &&
2478  (memory.drainState() != DrainState::Drained) &&
2479  memory.enableDRAMPowerdown) {
2480  DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning "
2481  "to self refresh at %11u tick\n", rank, curTick());
2483 
2484  // Since refresh was bypassed, remove event by decrementing count
2485  assert(outstandingEvents == 1);
2487 
2488  // reset state back to IDLE temporarily until SREF is entered
2489  pwrState = PWR_IDLE;
2490 
2491  // Not bypassing refresh for SREF entry
2492  } else {
2493  DPRINTF(DRAMState, "Refreshing\n");
2494 
2495  // there should be nothing waiting at this point
2496  assert(!powerEvent.scheduled());
2497 
2498  // kick the refresh event loop into action again, and that
2499  // in turn will schedule a transition to the idle power
2500  // state once the refresh is done
2502 
2503  // Banks transitioned to IDLE, start REF
2505  }
2506  }
2507 
2508 }
2509 
2510 void
2512 {
2513  // All commands up to refresh have completed
2514  // flush cmdList to DRAMPower
2515  flushCmdList();
2516 
2517  // Call the function that calculates window energy at intermediate update
2518  // events like at refresh, stats dump as well as at simulation exit.
2519  // Window starts at the last time the calcWindowEnergy function was called
2520  // and is upto current time.
2521  power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2522  memory.timeStampOffset);
2523 
2524  // Get the energy from DRAMPower
2525  Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy();
2526 
2527  // The energy components inside the power lib are calculated over
2528  // the window so accumulate into the corresponding gem5 stat
2529  stats.actEnergy += energy.act_energy * memory.devicesPerRank;
2530  stats.preEnergy += energy.pre_energy * memory.devicesPerRank;
2531  stats.readEnergy += energy.read_energy * memory.devicesPerRank;
2532  stats.writeEnergy += energy.write_energy * memory.devicesPerRank;
2533  stats.refreshEnergy += energy.ref_energy * memory.devicesPerRank;
2534  stats.actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank;
2535  stats.preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank;
2536  stats.actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank;
2537  stats.prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank;
2538  stats.selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank;
2539 
2540  // Accumulate window energy into the total energy.
2541  stats.totalEnergy += energy.window_energy * memory.devicesPerRank;
2542  // Average power must not be accumulated but calculated over the time
2543  // since last stats reset. SimClock::Frequency is tick period not tick
2544  // frequency.
2545  // energy (pJ) 1e-9
2546  // power (mW) = ----------- * ----------
2547  // time (tick) tick_frequency
2549  (curTick() - memory.lastStatsResetTick)) *
2550  (SimClock::Frequency / 1000000000.0);
2551 }
2552 
2553 void
2555 {
2556  DPRINTF(DRAM,"Computing stats due to a dump callback\n");
2557 
2558  // Update the stats
2559  updatePowerStats();
2560 
2561  // final update of power state times
2563  pwrStateTick = curTick();
2564 }
2565 
2566 void
2568  // The only way to clear the counters in DRAMPower is to call
2569  // calcWindowEnergy function as that then calls clearCounters. The
2570  // clearCounters method itself is private.
2571  power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2572  memory.timeStampOffset);
2573 
2574 }
2575 
2577  : Stats::Group(&_dram),
2578  dram(_dram),
2579 
2580  ADD_STAT(readReqs, "Number of read requests accepted"),
2581  ADD_STAT(writeReqs, "Number of write requests accepted"),
2582 
2583  ADD_STAT(readBursts,
2584  "Number of DRAM read bursts, "
2585  "including those serviced by the write queue"),
2586  ADD_STAT(writeBursts,
2587  "Number of DRAM write bursts, "
2588  "including those merged in the write queue"),
2589  ADD_STAT(servicedByWrQ,
2590  "Number of DRAM read bursts serviced by the write queue"),
2591  ADD_STAT(mergedWrBursts,
2592  "Number of DRAM write bursts merged with an existing one"),
2593 
2594  ADD_STAT(neitherReadNorWriteReqs,
2595  "Number of requests that are neither read nor write"),
2596 
2597  ADD_STAT(perBankRdBursts, "Per bank write bursts"),
2598  ADD_STAT(perBankWrBursts, "Per bank write bursts"),
2599 
2600  ADD_STAT(avgRdQLen, "Average read queue length when enqueuing"),
2601  ADD_STAT(avgWrQLen, "Average write queue length when enqueuing"),
2602 
2603  ADD_STAT(totQLat, "Total ticks spent queuing"),
2604  ADD_STAT(totBusLat, "Total ticks spent in databus transfers"),
2605  ADD_STAT(totMemAccLat,
2606  "Total ticks spent from burst creation until serviced "
2607  "by the DRAM"),
2608  ADD_STAT(avgQLat, "Average queueing delay per DRAM burst"),
2609  ADD_STAT(avgBusLat, "Average bus latency per DRAM burst"),
2610  ADD_STAT(avgMemAccLat, "Average memory access latency per DRAM burst"),
2611 
2612  ADD_STAT(numRdRetry, "Number of times read queue was full causing retry"),
2613  ADD_STAT(numWrRetry, "Number of times write queue was full causing retry"),
2614 
2615  ADD_STAT(readRowHits, "Number of row buffer hits during reads"),
2616  ADD_STAT(writeRowHits, "Number of row buffer hits during writes"),
2617  ADD_STAT(readRowHitRate, "Row buffer hit rate for reads"),
2618  ADD_STAT(writeRowHitRate, "Row buffer hit rate for writes"),
2619 
2620  ADD_STAT(readPktSize, "Read request sizes (log2)"),
2621  ADD_STAT(writePktSize, "Write request sizes (log2)"),
2622 
2623  ADD_STAT(rdQLenPdf, "What read queue length does an incoming req see"),
2624  ADD_STAT(wrQLenPdf, "What write queue length does an incoming req see"),
2625 
2626  ADD_STAT(bytesPerActivate, "Bytes accessed per row activation"),
2627 
2628  ADD_STAT(rdPerTurnAround,
2629  "Reads before turning the bus around for writes"),
2630  ADD_STAT(wrPerTurnAround,
2631  "Writes before turning the bus around for reads"),
2632 
2633  ADD_STAT(bytesReadDRAM, "Total number of bytes read from DRAM"),
2634  ADD_STAT(bytesReadWrQ, "Total number of bytes read from write queue"),
2635  ADD_STAT(bytesWritten, "Total number of bytes written to DRAM"),
2636  ADD_STAT(bytesReadSys, "Total read bytes from the system interface side"),
2637  ADD_STAT(bytesWrittenSys,
2638  "Total written bytes from the system interface side"),
2639 
2640  ADD_STAT(avgRdBW, "Average DRAM read bandwidth in MiByte/s"),
2641  ADD_STAT(avgWrBW, "Average achieved write bandwidth in MiByte/s"),
2642  ADD_STAT(avgRdBWSys, "Average system read bandwidth in MiByte/s"),
2643  ADD_STAT(avgWrBWSys, "Average system write bandwidth in MiByte/s"),
2644  ADD_STAT(peakBW, "Theoretical peak bandwidth in MiByte/s"),
2645 
2646  ADD_STAT(busUtil, "Data bus utilization in percentage"),
2647  ADD_STAT(busUtilRead, "Data bus utilization in percentage for reads"),
2648  ADD_STAT(busUtilWrite, "Data bus utilization in percentage for writes"),
2649 
2650  ADD_STAT(totGap, "Total gap between requests"),
2651  ADD_STAT(avgGap, "Average gap between requests"),
2652 
2653  ADD_STAT(masterReadBytes, "Per-master bytes read from memory"),
2654  ADD_STAT(masterWriteBytes, "Per-master bytes write to memory"),
2655  ADD_STAT(masterReadRate,
2656  "Per-master bytes read from memory rate (Bytes/sec)"),
2657  ADD_STAT(masterWriteRate,
2658  "Per-master bytes write to memory rate (Bytes/sec)"),
2659  ADD_STAT(masterReadAccesses,
2660  "Per-master read serviced memory accesses"),
2661  ADD_STAT(masterWriteAccesses,
2662  "Per-master write serviced memory accesses"),
2663  ADD_STAT(masterReadTotalLat,
2664  "Per-master read total memory access latency"),
2665  ADD_STAT(masterWriteTotalLat,
2666  "Per-master write total memory access latency"),
2667  ADD_STAT(masterReadAvgLat,
2668  "Per-master read average memory access latency"),
2669  ADD_STAT(masterWriteAvgLat,
2670  "Per-master write average memory access latency"),
2671 
2672  ADD_STAT(pageHitRate, "Row buffer hit rate, read and write combined")
2673 {
2674 }
2675 
2676 void
2678 {
2679  using namespace Stats;
2680 
2681  assert(dram._system);
2682  const auto max_masters = dram._system->maxMasters();
2683 
2686 
2687  avgRdQLen.precision(2);
2688  avgWrQLen.precision(2);
2689  avgQLat.precision(2);
2690  avgBusLat.precision(2);
2692 
2695 
2698 
2701 
2705  .flags(nozero);
2706 
2709  .flags(nozero);
2712  .flags(nozero);
2713 
2714  avgRdBW.precision(2);
2715  avgWrBW.precision(2);
2716  avgRdBWSys.precision(2);
2717  avgWrBWSys.precision(2);
2718  peakBW.precision(2);
2719  busUtil.precision(2);
2720  avgGap.precision(2);
2723 
2724 
2725  // per-master bytes read and written to memory
2727  .init(max_masters)
2728  .flags(nozero | nonan);
2729 
2731  .init(max_masters)
2732  .flags(nozero | nonan);
2733 
2734  // per-master bytes read and written to memory rate
2736  .flags(nozero | nonan)
2737  .precision(12);
2738 
2740  .init(max_masters)
2741  .flags(nozero);
2742 
2744  .init(max_masters)
2745  .flags(nozero);
2746 
2748  .init(max_masters)
2749  .flags(nozero | nonan);
2750 
2752  .flags(nonan)
2753  .precision(2);
2754 
2755 
2756  busUtilRead
2757  .precision(2);
2758 
2760  .flags(nozero | nonan)
2761  .precision(12);
2762 
2764  .init(max_masters)
2765  .flags(nozero | nonan);
2766 
2768  .flags(nonan)
2769  .precision(2);
2770 
2771  for (int i = 0; i < max_masters; i++) {
2772  const std::string master = dram._system->getMasterName(i);
2773  masterReadBytes.subname(i, master);
2774  masterReadRate.subname(i, master);
2775  masterWriteBytes.subname(i, master);
2776  masterWriteRate.subname(i, master);
2777  masterReadAccesses.subname(i, master);
2778  masterWriteAccesses.subname(i, master);
2779  masterReadTotalLat.subname(i, master);
2780  masterReadAvgLat.subname(i, master);
2781  masterWriteTotalLat.subname(i, master);
2782  masterWriteAvgLat.subname(i, master);
2783  }
2784 
2785  // Formula stats
2789 
2792 
2793  avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2794  avgWrBW = (bytesWritten / 1000000) / simSeconds;
2795  avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2796  avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2798  dram.burstSize / 1000000;
2799 
2800  busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2801 
2802  avgGap = totGap / (readReqs + writeReqs);
2803 
2804  busUtilRead = avgRdBW / peakBW * 100;
2805  busUtilWrite = avgWrBW / peakBW * 100;
2806 
2809 
2814 }
2815 
2816 void
2818 {
2820 }
2821 
2823  : Stats::Group(&_memory, csprintf("rank%d", _rank.rank).c_str()),
2824  rank(_rank),
2825 
2826  ADD_STAT(actEnergy, "Energy for activate commands per rank (pJ)"),
2827  ADD_STAT(preEnergy, "Energy for precharge commands per rank (pJ)"),
2828  ADD_STAT(readEnergy, "Energy for read commands per rank (pJ)"),
2829  ADD_STAT(writeEnergy, "Energy for write commands per rank (pJ)"),
2830  ADD_STAT(refreshEnergy, "Energy for refresh commands per rank (pJ)"),
2831  ADD_STAT(actBackEnergy, "Energy for active background per rank (pJ)"),
2832  ADD_STAT(preBackEnergy, "Energy for precharge background per rank (pJ)"),
2833  ADD_STAT(actPowerDownEnergy,
2834  "Energy for active power-down per rank (pJ)"),
2835  ADD_STAT(prePowerDownEnergy,
2836  "Energy for precharge power-down per rank (pJ)"),
2837  ADD_STAT(selfRefreshEnergy, "Energy for self refresh per rank (pJ)"),
2838 
2839  ADD_STAT(totalEnergy, "Total energy per rank (pJ)"),
2840  ADD_STAT(averagePower, "Core power per rank (mW)"),
2841 
2842  ADD_STAT(totalIdleTime, "Total Idle time Per DRAM Rank"),
2843  ADD_STAT(memoryStateTime, "Time in different power states")
2844 {
2845 }
2846 
2847 void
2849 {
2851 
2852  memoryStateTime.init(6);
2853  memoryStateTime.subname(0, "IDLE");
2854  memoryStateTime.subname(1, "REF");
2855  memoryStateTime.subname(2, "SREF");
2856  memoryStateTime.subname(3, "PRE_PDN");
2857  memoryStateTime.subname(4, "ACT");
2858  memoryStateTime.subname(5, "ACT_PDN");
2859 }
2860 
2861 void
2863 {
2865 
2866  rank.resetStats();
2867 }
2868 
2869 void
2871 {
2873 
2874  rank.computeStats();
2875 }
2876 
2877 void
2879 {
2880  // rely on the abstract memory
2881  functionalAccess(pkt);
2882 }
2883 
2884 Port &
2885 DRAMCtrl::getPort(const string &if_name, PortID idx)
2886 {
2887  if (if_name != "port") {
2888  return QoS::MemCtrl::getPort(if_name, idx);
2889  } else {
2890  return port;
2891  }
2892 }
2893 
2894 DrainState
2896 {
2897  // if there is anything in any of our internal queues, keep track
2898  // of that as well
2899  if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() &&
2900  allRanksDrained())) {
2901 
2902  DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2903  " resp: %d\n", totalWriteQueueSize, totalReadQueueSize,
2904  respQueue.size());
2905 
2906  // the only queue that is not drained automatically over time
2907  // is the write queue, thus kick things into action if needed
2910  }
2911 
2912  // also need to kick off events to exit self-refresh
2913  for (auto r : ranks) {
2914  // force self-refresh exit, which in turn will issue auto-refresh
2915  if (r->pwrState == PWR_SREF) {
2916  DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2917  r->rank);
2918  r->scheduleWakeUpEvent(tXS);
2919  }
2920  }
2921 
2922  return DrainState::Draining;
2923  } else {
2924  return DrainState::Drained;
2925  }
2926 }
2927 
2928 bool
2930 {
2931  // true until proven false
2932  bool all_ranks_drained = true;
2933  for (auto r : ranks) {
2934  // then verify that the power state is IDLE ensuring all banks are
2935  // closed and rank is not in a low power state. Also verify that rank
2936  // is idle from a refresh point of view.
2937  all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() &&
2938  all_ranks_drained;
2939  }
2940  return all_ranks_drained;
2941 }
2942 
2943 void
2945 {
2946  if (!isTimingMode && system()->isTimingMode()) {
2947  // if we switched to timing mode, kick things into action,
2948  // and behave as if we restored from a checkpoint
2949  startup();
2950  } else if (isTimingMode && !system()->isTimingMode()) {
2951  // if we switch from timing mode, stop the refresh events to
2952  // not cause issues with KVM
2953  for (auto r : ranks) {
2954  r->suspend();
2955  }
2956  }
2957 
2958  // update the mode
2960 }
2961 
2962 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2963  : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this, true),
2964  memory(_memory)
2965 { }
2966 
2969 {
2970  AddrRangeList ranges;
2971  ranges.push_back(memory.getAddrRange());
2972  return ranges;
2973 }
2974 
2975 void
2977 {
2978  pkt->pushLabel(memory.name());
2979 
2980  if (!queue.trySatisfyFunctional(pkt)) {
2981  // Default implementation of SimpleTimingPort::recvFunctional()
2982  // calls recvAtomic() and throws away the latency; we can save a
2983  // little here by just not calculating the latency.
2984  memory.recvFunctional(pkt);
2985  }
2986 
2987  pkt->popLabel();
2988 }
2989 
2990 Tick
2992 {
2993  return memory.recvAtomic(pkt);
2994 }
2995 
2996 bool
2998 {
2999  // pass it to the memory controller
3000  return memory.recvTimingReq(pkt);
3001 }
3002 
3003 DRAMCtrl*
3004 DRAMCtrlParams::create()
3005 {
3006  return new DRAMCtrl(this);
3007 }
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:163
Stats::Scalar numRdRetry
Definition: dram_ctrl.hh:1133
void logResponse(BusState dir, MasterID m_id, uint8_t qos, Addr addr, uint64_t entries, double delay)
Called upon receiving a response, updates statistics and updates queues status.
Definition: mem_ctrl.cc:143
#define DPRINTF(x,...)
Definition: trace.hh:225
void pruneBurstTick()
Remove commands that have already issued from burstTicks.
Definition: dram_ctrl.cc:934
bool retryWrReq
Definition: dram_ctrl.hh:134
Enums::PageManage pageMgmt
Definition: dram_ctrl.hh:1063
void functionalAccess(PacketPtr pkt)
Perform an untimed memory read or write without changing anything but the memory itself.
Stats::Scalar preEnergy
Definition: dram_ctrl.hh:280
bool enableDRAMPowerdown
Enable or disable DRAM powerdown states.
Definition: dram_ctrl.hh:1206
Stats::Formula avgBusLat
Definition: dram_ctrl.hh:1130
const uint32_t writeLowThreshold
Definition: dram_ctrl.hh:1013
const uint32_t activationLimit
Definition: dram_ctrl.hh:1048
Ports are used to interface objects to each other.
Definition: port.hh:56
uint32_t bytesAccessed
Definition: dram_ctrl.hh:179
Stats::Scalar mergedWrBursts
Definition: dram_ctrl.hh:1114
const Tick entryTime
When did request enter the controller.
Definition: dram_ctrl.hh:612
Stats::Scalar readBursts
Definition: dram_ctrl.hh:1111
const bool dataClockSync
Definition: dram_ctrl.hh:1046
Stats::Scalar totalEnergy
Definition: dram_ctrl.hh:310
void resetStats()
Reset stats on a stats event.
Definition: dram_ctrl.cc:2567
Stats::Scalar bytesReadDRAM
Definition: dram_ctrl.hh:1150
virtual void resetStats()
Callback to reset stats.
Definition: group.cc:82
RankStats stats
Definition: dram_ctrl.hh:579
void sendRangeChange() const
Called by the owner to send a range change.
Definition: port.hh:282
Derived & subname(off_type index, const std::string &name)
Set the subfield name for the given index, and marks this stat to print at the end of simulation...
Definition: statistics.hh:376
#define fatal(...)
This implements a cprintf based fatal() function.
Definition: logging.hh:171
bool retryRdReq
Remember if we have to retry a request when available.
Definition: dram_ctrl.hh:133
BusState busStateNext
bus state for next request event triggered
Definition: mem_ctrl.hh:122
Stats::Scalar bytesWrittenSys
Definition: dram_ctrl.hh:1154
const std::string & name()
Definition: trace.cc:50
unsigned int maxCommandsPerBurst
Definition: dram_ctrl.hh:1045
Stats::Formula busUtil
Definition: dram_ctrl.hh:1163
virtual AddrRangeList getAddrRanges() const
Get a list of the non-overlapping address ranges the owner is responsible for.
Definition: dram_ctrl.cc:2968
const Tick tRCD
Definition: dram_ctrl.hh:1029
const Tick tWR
Definition: dram_ctrl.hh:1033
Bitfield< 7 > i
const Tick rdToWrDlySameBG
Definition: dram_ctrl.hh:1053
std::vector< Command > cmdList
List of commands issued, to be sent to DRAMPpower at refresh and stats dump.
Definition: dram_ctrl.hh:432
std::vector< Rank * > ranks
Vector of ranks.
Definition: dram_ctrl.hh:988
std::string getMasterName(MasterID master_id)
Get the name of an object for a given request id.
Definition: system.cc:541
STL pair class.
Definition: stl.hh:58
void doDRAMAccess(DRAMPacket *dram_pkt)
Actually do the DRAM access - figure out the latency it will take to service the req based on bank st...
Definition: dram_ctrl.cc:1212
EventFunctionWrapper nextReqEvent
Definition: dram_ctrl.hh:730
Stats::Formula avgWrBW
Definition: dram_ctrl.hh:1158
const bool burstInterleave
Definition: dram_ctrl.hh:1054
const Tick tRAS
Definition: dram_ctrl.hh:1032
Stats::Formula busUtilRead
Definition: dram_ctrl.hh:1164
uint64_t granularity() const
Determing the interleaving granularity of the range.
Definition: addr_range.hh:253
uint64_t totalReadQueueSize
Total read request packets queue length in #packets.
Definition: mem_ctrl.hh:110
std::pair< std::vector< uint32_t >, bool > minBankPrep(const DRAMPacketQueue &queue, Tick min_col_at) const
Find which are the earliest banks ready to issue an activate for the enqueued requests.
Definition: dram_ctrl.cc:1779
A DRAM packet stores packets along with the timestamp of when the packet entered the queue...
Definition: dram_ctrl.hh:607
const FlagsType nonan
Don&#39;t print if this is NAN.
Definition: info.hh:59
uint32_t writeEntries
Track number of packets in write queue going to this rank.
Definition: dram_ctrl.hh:407
const Tick tRRD
Definition: dram_ctrl.hh:1037
uint32_t openRow
Definition: dram_ctrl.hh:169
Stats::Vector perBankRdBursts
Definition: dram_ctrl.hh:1116
Tick verifySingleCmd(Tick cmd_tick)
Check for command bus contention for single cycle command.
Definition: dram_ctrl.cc:955
DRAMPacketQueue::iterator chooseNextFRFCFS(DRAMPacketQueue &queue, Tick extra_col_delay)
For FR-FCFS policy reorder the read/write queue depending on row buffer hits and earliest bursts avai...
Definition: dram_ctrl.cc:787
uint32_t readEntries
Track number of packets in read queue going to this rank.
Definition: dram_ctrl.hh:402
Tick lastStatsResetTick
The time when stats were last reset used to calculate average power.
Definition: dram_ctrl.hh:1203
MemoryPort(const std::string &name, DRAMCtrl &_memory)
Definition: dram_ctrl.cc:2962
const Tick frontendLatency
Pipeline latency of the controller frontend.
Definition: dram_ctrl.hh:1076
Stats::Vector masterReadTotalLat
Definition: dram_ctrl.hh:1183
ip6_addr_t addr
Definition: inet.hh:330
const Tick tXP
Definition: dram_ctrl.hh:1042
Stats::Formula pageHitRate
Definition: dram_ctrl.hh:1191
Stats::Scalar selfRefreshEnergy
Definition: dram_ctrl.hh:308
Stats::Histogram wrPerTurnAround
Definition: dram_ctrl.hh:1148
bool cacheResponding() const
Definition: packet.hh:585
bool recvTimingReq(PacketPtr pkt)
Definition: dram_ctrl.cc:588
Stats::Formula avgWrBWSys
Definition: dram_ctrl.hh:1160
DRAMCtrl(const DRAMCtrlParams *p)
Definition: dram_ctrl.cc:55
DrainState drain() override
Notify an object that it needs to drain its state.
Definition: dram_ctrl.cc:2895
uint32_t rowAccesses
Definition: dram_ctrl.hh:178
MasterID masterId() const
Get the packet MasterID (interface compatibility with Packet)
Definition: dram_ctrl.hh:680
std::deque< DRAMPacket * > respQueue
Response queue where read packets wait after we&#39;re done working with them, but it&#39;s not time to send ...
Definition: dram_ctrl.hh:976
const Tick tCL
Definition: dram_ctrl.hh:1030
Rank(DRAMCtrl &_memory, const DRAMCtrlParams *_p, int rank)
Definition: dram_ctrl.cc:1863
unsigned int burstsServiced
Number of DRAM bursts serviced so far for a system packet.
Definition: dram_ctrl.hh:596
Stats::Vector memoryStateTime
Track time spent in each power state.
Definition: dram_ctrl.hh:322
int ceilLog2(const T &n)
Definition: intmath.hh:79
Stats::Formula avgQLat
Definition: dram_ctrl.hh:1129
RefreshState refreshState
current refresh state
Definition: dram_ctrl.hh:387
Addr addr
The starting address of the DRAM packet.
Definition: dram_ctrl.hh:643
Bitfield< 23, 0 > offset
Definition: types.hh:152
Histogram & init(size_type size)
Set the parameters of this histogram.
Definition: statistics.hh:2641
Overload hash function for BasicBlockRange type.
Definition: vec_reg.hh:587
bool writeQueueFull(unsigned int pktCount) const
Check if the write queue has room for more entries.
Definition: dram_ctrl.cc:296
uint8_t bank
Definition: dram_ctrl.hh:170
Tick refreshDueAt
Keep track of when a refresh is due.
Definition: dram_ctrl.hh:361
bool isConnected() const
Is this port currently connected to a peer?
Definition: port.hh:124
A queued port is a port that has an infinite queue for outgoing packets and thus decouples the module...
Definition: qport.hh:58
const Tick rankToRankDly
Definition: dram_ctrl.hh:1049
The DRAM controller is a single-channel memory controller capturing the most important timing constra...
Definition: dram_ctrl.hh:90
Stats::Scalar totGap
Definition: dram_ctrl.hh:1167
Stats::Vector writePktSize
Definition: dram_ctrl.hh:1143
uint8_t rank
Current Rank index.
Definition: dram_ctrl.hh:397
Helper class for objects that have power states.
Definition: power_state.hh:61
uint8_t numPriorities() const
Gets the total number of priority levels in the QoS memory controller.
Definition: mem_ctrl.hh:348
const uint32_t burstLength
Definition: dram_ctrl.hh:998
uint8_t qosSchedule(std::initializer_list< Queues *> queues_ptr, uint64_t queue_entry_size, const PacketPtr pkt)
Assign priority to a packet by executing the configured QoS policy.
Definition: mem_ctrl.hh:473
void pushLabel(const std::string &lbl)
Push label for PrintReq (safe to call unconditionally).
Definition: packet.hh:1320
void regStats() override
Callback to set stat parameters.
Definition: dram_ctrl.cc:2848
bool isWrite() const
Definition: packet.hh:523
const uint32_t ranksPerChannel
Definition: dram_ctrl.hh:1005
Tick Frequency
The simulated frequency of curTick(). (In ticks per second)
Definition: core.cc:46
bool readQueueFull(unsigned int pktCount) const
Check if the read queue has room for more entries.
Definition: dram_ctrl.cc:285
Derived & flags(Flags _flags)
Set the flags and marks this stat to print at the end of simulation.
Definition: statistics.hh:333
Stats::Formula avgRdBW
Definition: dram_ctrl.hh:1157
Stats::Formula simSeconds
Definition: stat_control.cc:61
bool isRead() const
Definition: packet.hh:522
DRAMStats stats
Definition: dram_ctrl.hh:1194
const std::unique_ptr< TurnaroundPolicy > turnPolicy
QoS Bus Turnaround Policy: selects the bus direction (READ/WRITE)
Definition: mem_ctrl.hh:70
const uint32_t deviceRowBufferSize
Definition: dram_ctrl.hh:999
DrainState
Object drain/handover states.
Definition: drain.hh:71
A burst helper helps organize and manage a packet that is larger than the DRAM burst size...
Definition: dram_ctrl.hh:588
Derived & init(size_type size)
Set this vector to have the given size.
Definition: statistics.hh:1149
const uint16_t bankId
Bank id is calculated considering banks in all the ranks eg: 2 ranks each with 8 banks, then bankId = 0 –> rank0, bank0 and bankId = 8 –> rank1, bank0.
Definition: dram_ctrl.hh:635
void computeStats()
Computes stats just prior to dump event.
Definition: dram_ctrl.cc:2554
virtual void init() override
init() is called after all C++ SimObjects have been created and all ports are connected.
Definition: dram_ctrl.cc:193
uint8_t outstandingEvents
Number of ACT, RD, and WR events currently scheduled Incremented when a refresh event is started as w...
Definition: dram_ctrl.hh:414
EventFunctionWrapper activateEvent
Definition: dram_ctrl.hh:564
Stats::Scalar writeEnergy
Definition: dram_ctrl.hh:282
void startup(Tick ref_tick)
Kick off accounting for power and refresh states and schedule initial refresh.
Definition: dram_ctrl.cc:1901
bool isQueueEmpty() const
Check if the command queue of current rank is idle.
Definition: dram_ctrl.cc:1925
unsigned int numBanksActive
To track number of banks which are currently active for this rank.
Definition: dram_ctrl.hh:444
Stats::Vector perBankWrBursts
Definition: dram_ctrl.hh:1117
Stats::Formula peakBW
Definition: dram_ctrl.hh:1161
void recvFunctional(PacketPtr pkt)
Receive a functional request packet from the peer.
Definition: dram_ctrl.cc:2976
bool isTimingMode
Remember if the memory system is in timing mode.
Definition: dram_ctrl.hh:128
void processWriteDoneEvent()
Definition: dram_ctrl.cc:2019
DrainState drainState() const
Return the current drain state of an object.
Definition: drain.hh:308
void regStats() override
Callback to set stat parameters.
Definition: dram_ctrl.cc:2677
Stats::Scalar numWrRetry
Definition: dram_ctrl.hh:1134
Bitfield< 7 > b
A basic class to track the bank state, i.e.
Definition: dram_ctrl.hh:162
unsigned getSize() const
Definition: packet.hh:730
Addr getCtrlAddr(Addr addr)
Get an address in a dense range which starts from 0.
Definition: dram_ctrl.hh:827
const Tick MaxTick
Definition: types.hh:63
const Tick tCCD_L_WR
Definition: dram_ctrl.hh:1027
Draining buffers pending serialization/handover.
virtual void preDumpStats()
Callback before stats are dumped.
Definition: group.cc:95
const uint32_t maxAccessesPerRow
Max column accesses (read and write) per row, before forcefully closing it.
Definition: dram_ctrl.hh:1069
const uint32_t bankGroupsPerRank
Definition: dram_ctrl.hh:1006
const Tick tREFI
Definition: dram_ctrl.hh:1036
Tick lastBurstTick
Track when we issued the last read/write burst.
Definition: dram_ctrl.hh:452
Tick curTick()
The current simulated tick.
Definition: core.hh:44
Tick recvAtomic(PacketPtr pkt)
Receive an atomic request packet from the peer.
Definition: dram_ctrl.cc:2991
Stats::Vector masterReadBytes
Definition: dram_ctrl.hh:1171
virtual Port & getPort(const std::string &if_name, PortID idx=InvalidPortID)
Get a port with a given name and index.
Definition: sim_object.cc:123
Enums::MemSched memSchedPolicy
Memory controller configuration initialized based on parameter values.
Definition: dram_ctrl.hh:1061
std::string csprintf(const char *format, const Args &...args)
Definition: cprintf.hh:158
bool needsResponse() const
Definition: packet.hh:536
const Tick backendLatency
Pipeline latency of the backend and PHY.
Definition: dram_ctrl.hh:1083
EventFunctionWrapper prechargeEvent
Definition: dram_ctrl.hh:567
Stats::Vector wrQLenPdf
Definition: dram_ctrl.hh:1145
uint32_t headerDelay
The extra delay from seeing the packet until the header is transmitted.
Definition: packet.hh:360
void processPowerEvent()
Definition: dram_ctrl.cc:2378
Stats::Scalar servicedByWrQ
Definition: dram_ctrl.hh:1113
void schedTimingResp(PacketPtr pkt, Tick when)
Schedule the sending of a timing response.
Definition: qport.hh:90
BurstHelper * burstHelper
A pointer to the BurstHelper if this DRAMPacket is a split packet If not a split packet (common case)...
Definition: dram_ctrl.hh:655
void prechargeBank(Rank &rank_ref, Bank &bank_ref, Tick pre_tick, bool auto_or_preall=false, bool trace=true)
Precharge a given bank and also update when the precharge is done.
Definition: dram_ctrl.cc:1149
const Tick tRP
Definition: dram_ctrl.hh:1031
std::vector< Bank > banks
Vector of Banks.
Definition: dram_ctrl.hh:438
#define RD
Definition: bitfields.hh:14
uint64_t Tick
Tick count type.
Definition: types.hh:61
uint64_t power(uint32_t n, uint32_t e)
Definition: intmath.hh:40
uint8_t qosValue() const
QoS Value getter Returns 0 if QoS value was never set (constructor default).
Definition: packet.hh:695
DRAMCtrl declaration.
void qosValue(const uint8_t qv)
Set the packet QoS value (interface compatibility with Packet)
Definition: dram_ctrl.hh:668
bool isResponse() const
Definition: packet.hh:526
void popLabel()
Pop label for PrintReq (safe to call unconditionally).
Definition: packet.hh:1330
Stats::Formula avgGap
Definition: dram_ctrl.hh:1168
PowerState pwrState
Current power state.
Definition: dram_ctrl.hh:382
void checkDrainDone()
Let the rank check if it was waiting for requests to drain to allow it to transition states...
Definition: dram_ctrl.cc:1935
EventFunctionWrapper respondEvent
Definition: dram_ctrl.hh:733
void replaceBits(T &val, int first, int last, B bit_val)
A convenience function to replace bits first to last of val with bit_val in place.
Definition: bitfield.hh:156
const Tick tRFC
Definition: dram_ctrl.hh:1035
std::deque< Tick > actTicks
List to keep track of activate ticks.
Definition: dram_ctrl.hh:447
Stats::Vector masterWriteAccesses
Definition: dram_ctrl.hh:1180
DRAMStats(DRAMCtrl &dram)
Definition: dram_ctrl.cc:2576
void access(PacketPtr pkt)
Perform an untimed memory access and update all the state (e.g.
uint64_t timeStampOffset
Definition: dram_ctrl.hh:1200
Stats::Formula readRowHitRate
Definition: dram_ctrl.hh:1139
const uint8_t twoCycleActivate
Definition: dram_ctrl.hh:1047
std::vector< DRAMPacketQueue > readQueue
The controller&#39;s main read and write queues, with support for QoS reordering.
Definition: dram_ctrl.hh:956
Stats::Vector rdQLenPdf
Definition: dram_ctrl.hh:1144
void deschedule(Event &event)
Definition: eventq.hh:943
const Tick tPPD
Definition: dram_ctrl.hh:1039
Addr getAddr() const
Definition: packet.hh:720
uint32_t writesThisTime
Definition: dram_ctrl.hh:1015
Stats::Scalar totQLat
Definition: dram_ctrl.hh:1124
bool hasData() const
Definition: packet.hh:542
Tick recvAtomic(PacketPtr pkt)
Definition: dram_ctrl.cc:265
const Tick tRTP
Definition: dram_ctrl.hh:1034
MasterID masterId() const
Definition: packet.hh:706
bool isPowerOf2(const T &n)
Definition: intmath.hh:90
#define fatal_if(cond,...)
Conditional fatal macro that checks the supplied condition and only causes a fatal error if the condi...
Definition: logging.hh:199
Stats::Scalar writeReqs
Definition: dram_ctrl.hh:1110
void schedule(Event &event, Tick when)
Definition: eventq.hh:934
Stats::Scalar readReqs
Definition: dram_ctrl.hh:1109
BusState busState
Bus state used to control the read/write switching and drive the scheduling of the next request...
Definition: mem_ctrl.hh:119
void recordTurnaroundStats()
Record statistics on turnarounds based on busStateNext and busState values.
Definition: mem_ctrl.cc:353
Stats::Scalar readEnergy
Definition: dram_ctrl.hh:281
const Tick rdToWrDly
Definition: dram_ctrl.hh:1051
Stats::Formula masterReadAvgLat
Definition: dram_ctrl.hh:1187
Tick pwrStateTick
Track when we transitioned to the current power state.
Definition: dram_ctrl.hh:356
const Tick clkResyncDelay
Definition: dram_ctrl.hh:1044
Stats::Vector masterReadAccesses
Definition: dram_ctrl.hh:1179
static bool sortTime(const Command &cmd, const Command &cmd_next)
Function for sorting Command structures based on timeStamp.
Definition: dram_ctrl.hh:1232
void reschedule(Event &event, Tick when, bool always=false)
Definition: eventq.hh:952
uint64_t totalWriteQueueSize
Total write request packets queue length in #packets.
Definition: mem_ctrl.hh:113
Stats::Scalar prePowerDownEnergy
Definition: dram_ctrl.hh:303
const Tick wrToRdDlySameBG
Definition: dram_ctrl.hh:1052
void resetStats() override
Callback to reset stats.
Definition: dram_ctrl.cc:2817
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:140
Stats::Scalar bytesReadWrQ
Definition: dram_ctrl.hh:1151
Stats::Formula avgMemAccLat
Definition: dram_ctrl.hh:1131
Derived & precision(int _precision)
Set the precision and marks this stat to print at the end of simulation.
Definition: statistics.hh:321
#define ULL(N)
uint64_t constant
Definition: types.hh:48
uint32_t payloadDelay
The extra pipelining delay from seeing the packet until the end of payload is transmitted by the comp...
Definition: packet.hh:378
uint8_t bankgr
Definition: dram_ctrl.hh:171
const uint8_t rank
Will be populated by address decoder.
Definition: dram_ctrl.hh:626
void activateBank(Rank &rank_ref, Bank &bank_ref, Tick act_tick, uint32_t row)
Keep track of when row activations happen, in order to enforce the maximum number of activations in t...
Definition: dram_ctrl.cc:1040
PowerState pwrStatePostRefresh
Previous low-power state, which will be re-entered after refresh.
Definition: dram_ctrl.hh:351
const Tick tAAD
Definition: dram_ctrl.hh:1040
A Packet is used to encapsulate a transfer between two objects in the memory system (e...
Definition: packet.hh:249
RespPacketQueue queue
Definition: dram_ctrl.hh:100
const Tick tCS
Definition: dram_ctrl.hh:1024
const Tick M5_CLASS_VAR_USED tCK
Basic memory timing parameters initialized based on parameter values.
Definition: dram_ctrl.hh:1022
bool isRead() const
Return true if its a read packet (interface compatibility with Packet)
Definition: dram_ctrl.hh:698
Statistics container.
Definition: group.hh:83
void processRefreshEvent()
Definition: dram_ctrl.cc:2030
Tick prevArrival
Definition: dram_ctrl.hh:1090
Stats::Scalar averagePower
Definition: dram_ctrl.hh:311
const Tick tXAW
Definition: dram_ctrl.hh:1041
const uint32_t row
Definition: dram_ctrl.hh:628
const unsigned int burstCount
Number of DRAM bursts requred for a system packet.
Definition: dram_ctrl.hh:593
std::unique_ptr< Packet > pendingDelete
Upstream caches need this packet until true is returned, so hold it for deletion until a subsequent c...
Definition: dram_ctrl.hh:1212
void addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
Decode the incoming pkt, create a dram_pkt and push to the back of the write queue.
Definition: dram_ctrl.cc:489
static const uint32_t NO_ROW
Definition: dram_ctrl.hh:167
const uint32_t rowBufferSize
Definition: dram_ctrl.hh:1002
RankStats(DRAMCtrl &memory, Rank &rank)
Definition: dram_ctrl.cc:2822
bool inRefIdleState() const
Check if there is no refresh and no preparation of refresh ongoing i.e.
Definition: dram_ctrl.hh:480
const uint32_t devicesPerRank
Definition: dram_ctrl.hh:1000
MasterID maxMasters()
Get the number of masters registered in the system.
Definition: system.hh:373
const Tick tBURST_MIN
Definition: dram_ctrl.hh:1026
uint32_t rowsPerBank
Definition: dram_ctrl.hh:1009
PowerState pwrStateTrans
Since we are taking decisions out of order, we need to keep track of what power transition is happeni...
Definition: dram_ctrl.hh:346
STL deque class.
Definition: stl.hh:44
Bitfield< 24 > j
const uint32_t minWritesPerSwitch
Definition: dram_ctrl.hh:1014
void suspend()
Stop the refresh events.
Definition: dram_ctrl.cc:1913
Stats::Formula masterWriteRate
Definition: dram_ctrl.hh:1176
Definition: mem_ctrl.cc:42
void schedulePowerEvent(PowerState pwr_state, Tick tick)
Schedule a power state transition in the future, and potentially override an already scheduled transi...
Definition: dram_ctrl.cc:2236
bool scheduled() const
Determine if the current event is scheduled.
Definition: eventq.hh:459
void accessAndRespond(PacketPtr pkt, Tick static_latency)
When a packet reaches its "readyTime" in the response Q, use the "access()" method in AbstractMemory ...
Definition: dram_ctrl.cc:897
const uint32_t deviceBusWidth
Definition: dram_ctrl.hh:997
const Tick tXS
Definition: dram_ctrl.hh:1043
Stats::Scalar bytesReadSys
Definition: dram_ctrl.hh:1153
Stats::Formula avgRdBWSys
Definition: dram_ctrl.hh:1159
void updatePowerStats()
Function to update Power Stats.
Definition: dram_ctrl.cc:2511
EventFunctionWrapper powerEvent
Definition: dram_ctrl.hh:573
#define ADD_STAT(n,...)
Convenience macro to add a stat to a statistics group.
Definition: group.hh:67
AddrRange range
const uint32_t writeHighThreshold
Definition: dram_ctrl.hh:1012
std::unordered_multiset< Tick > burstTicks
Holds count of commands issued in burst window starting at defined Tick.
Definition: dram_ctrl.hh:983
virtual const std::string name() const
Definition: sim_object.hh:129
Enums::AddrMap addrMapping
Definition: dram_ctrl.hh:1062
Tick nextReqTime
The soonest you have to start thinking about the next request is the longest access time that can occ...
Definition: dram_ctrl.hh:1098
bool allRanksDrained() const
Return true once refresh is complete for all ranks and there are no additional commands enqueued...
Definition: dram_ctrl.cc:2929
void processPrechargeEvent()
Definition: dram_ctrl.cc:1988
void powerDownSleep(PowerState pwr_state, Tick tick)
Schedule a transition to power-down (sleep)
Definition: dram_ctrl.cc:2257
System * system() const
read the system pointer Implemented for completeness with the setter
Stats::Scalar preBackEnergy
Definition: dram_ctrl.hh:293
const Tick tRTW
Definition: dram_ctrl.hh:1023
Tick getBurstWindow(Tick cmd_tick)
Calculate burst window aligned tick.
Definition: dram_ctrl.cc:947
Stats::Scalar totBusLat
Definition: dram_ctrl.hh:1125
bool interleaved() const
Determine if the range is interleaved or not.
Definition: addr_range.hh:246
Stats::Average avgRdQLen
Definition: dram_ctrl.hh:1120
Group()=delete
EventFunctionWrapper wakeUpEvent
Definition: dram_ctrl.hh:576
const std::string name() const
Definition: dram_ctrl.hh:456
void processActivateEvent()
Definition: dram_ctrl.cc:1978
DRAMPacket * decodeAddr(const PacketPtr pkt, Addr dramPktAddr, unsigned int size, bool isRead) const
Address decoder to figure out physical mapping onto ranks, banks, and rows.
Definition: dram_ctrl.cc:306
DRAMPower power
One DRAMPower instance per rank.
Definition: dram_ctrl.hh:424
void sendRetryReq()
Send a retry to the master port that previously attempted a sendTimingReq to this slave port and fail...
Definition: port.hh:376
Stats::Scalar writeRowHits
Definition: dram_ctrl.hh:1138
Stats::Scalar totalIdleTime
Stat to track total DRAM idle time.
Definition: dram_ctrl.hh:317
const Tick tCCD_L
Definition: dram_ctrl.hh:1028
void logRequest(BusState dir, MasterID m_id, uint8_t qos, Addr addr, uint64_t entries)
Called upon receiving a request or updates statistics and updates queues status.
Definition: mem_ctrl.cc:86
uint64_t size() const
Get the memory size.
Tick wakeUpAllowedAt
delay power-down and self-refresh exit until this requirement is met
Definition: dram_ctrl.hh:419
Stats::Formula busUtilWrite
Definition: dram_ctrl.hh:1165
Stats::Formula writeRowHitRate
Definition: dram_ctrl.hh:1140
void resetStats() override
Callback to reset stats.
Definition: dram_ctrl.cc:2862
void processNextReqEvent()
Bunch of things requires to setup "events" in gem5 When event "respondEvent" occurs for example...
Definition: dram_ctrl.cc:1473
Stats::Scalar actEnergy
Definition: dram_ctrl.hh:279
System * _system
Pointer to the System object.
std::unordered_set< Addr > isInWriteQueue
To avoid iterating over the write queue to check for overlapping transactions, maintain a set of burs...
Definition: dram_ctrl.hh:966
const uint32_t columnsPerRowBuffer
Definition: dram_ctrl.hh:1003
void signalDrainDone() const
Signal that an object is drained.
Definition: drain.hh:289
void recvFunctional(PacketPtr pkt)
Definition: dram_ctrl.cc:2878
Stats::Histogram bytesPerActivate
Definition: dram_ctrl.hh:1146
Tick verifyMultiCmd(Tick cmd_tick, Tick max_multi_cmd_split=0)
Check for command bus contention for multi-cycle (2 currently) command.
Definition: dram_ctrl.cc:977
T divCeil(const T &a, const U &b)
Definition: intmath.hh:99
Stats::Formula masterWriteAvgLat
Definition: dram_ctrl.hh:1188
Stats::Scalar actBackEnergy
Definition: dram_ctrl.hh:288
EventFunctionWrapper refreshEvent
Definition: dram_ctrl.hh:570
uint32_t readsThisTime
Definition: dram_ctrl.hh:1016
Definition: mem.h:38
Stats::Scalar readRowHits
Definition: dram_ctrl.hh:1137
Simple structure to hold the values needed to keep track of commands for DRAMPower.
Definition: dram_ctrl.hh:142
Stats::Formula masterReadRate
Definition: dram_ctrl.hh:1175
void processWakeUpEvent()
Definition: dram_ctrl.cc:2360
const uint32_t deviceSize
The following are basic design parameters of the memory controller, and are initialized based on para...
Definition: dram_ctrl.hh:996
uint8_t activeRank
Definition: dram_ctrl.hh:1197
Stats::Average avgWrQLen
Definition: dram_ctrl.hh:1121
std::vector< DRAMPacketQueue > writeQueue
Definition: dram_ctrl.hh:957
int16_t PortID
Port index/ID type, and a symbolic name for an invalid port id.
Definition: types.hh:235
Tick readyTime
When will request leave the controller.
Definition: dram_ctrl.hh:615
const uint32_t columnsPerStripe
Definition: dram_ctrl.hh:1004
#define warn(...)
Definition: logging.hh:208
Stats::Scalar totMemAccLat
Definition: dram_ctrl.hh:1126
const uint8_t bank
Definition: dram_ctrl.hh:627
Data::MemCommand::cmds type
Definition: dram_ctrl.hh:143
virtual void regStats()
Callback to set stat parameters.
Definition: group.cc:64
void preDumpStats() override
Callback before stats are dumped.
Definition: dram_ctrl.cc:2870
bool trySatisfyFunctional(PacketPtr pkt)
Check the list of buffered packets against the supplied functional request.
Definition: packet_queue.cc:84
bool isTimingMode() const
Is the system in timing mode?
Definition: system.hh:142
Tick nextBurstAt
Till when must we wait before issuing next RD/WR burst?
Definition: dram_ctrl.hh:1088
T bits(T val, int first, int last)
Extract the bitfield from position &#39;first&#39; to &#39;last&#39; (inclusive) from &#39;val&#39; and right justify it...
Definition: bitfield.hh:71
const std::string & cmdString() const
Return the string name of the cmd field (for debugging and tracing).
Definition: packet.hh:517
void processRespondEvent()
Definition: dram_ctrl.cc:652
const uint32_t writeBufferSize
Definition: dram_ctrl.hh:1011
const uint32_t burstSize
Definition: dram_ctrl.hh:1001
const uint32_t banksPerRank
Definition: dram_ctrl.hh:1008
const uint32_t readBufferSize
Definition: dram_ctrl.hh:1010
DRAMPower is a standalone tool which calculates the power consumed by a DRAM in the system...
Definition: drampower.hh:53
const FlagsType nozero
Don&#39;t print if this is zero.
Definition: info.hh:57
Bitfield< 0 > p
const Tick tRRD_L
Definition: dram_ctrl.hh:1038
Running normally.
#define panic_if(cond,...)
Conditional panic macro that checks the supplied condition and only panics if the condition is true a...
Definition: logging.hh:181
const Tick burstDataCycles
Definition: dram_ctrl.hh:1055
virtual void drainResume() override
Resume execution after a successful drain.
Definition: dram_ctrl.cc:2944
Tick when() const
Get the time that the event is scheduled.
Definition: eventq.hh:499
virtual void startup() override
startup() is the final initialization call before simulation.
Definition: dram_ctrl.cc:241
Addr burstAlign(Addr addr) const
Burst-align an address.
Definition: dram_ctrl.hh:951
Stats::Vector masterWriteBytes
Definition: dram_ctrl.hh:1172
Counter value() const
Return the current value of this stat as its base type.
Definition: statistics.hh:700
Stats::Vector readPktSize
Definition: dram_ctrl.hh:1142
const Tick wrToRdDly
Definition: dram_ctrl.hh:1050
void addToReadQueue(PacketPtr pkt, unsigned int pktCount)
When a new read comes in, first check if the write q has a pending request to the same address...
Definition: dram_ctrl.cc:382
Stats::Scalar actPowerDownEnergy
Definition: dram_ctrl.hh:298
void printQs() const
Used for debugging to observe the contents of the queues.
Definition: dram_ctrl.cc:563
uint8_t schedule(MasterID m_id, uint64_t data)
Definition: mem_ctrl.cc:212
unsigned int size
The size of this dram packet in bytes It is always equal or smaller than DRAM burst size...
Definition: dram_ctrl.hh:649
bool recvTimingReq(PacketPtr)
Receive a timing request from the peer.
Definition: dram_ctrl.cc:2997
void sample(const U &v, int n=1)
Add a value to the distribtion n times.
Definition: statistics.hh:1896
const bool bankGroupArch
Definition: dram_ctrl.hh:1007
const FlagsType init
This Stat is Initialized.
Definition: info.hh:45
Stats::Vector masterWriteTotalLat
Definition: dram_ctrl.hh:1184
Port & getPort(const std::string &if_name, PortID idx=InvalidPortID) override
Get a port with a given name and index.
Definition: dram_ctrl.cc:2885
Stats::Scalar writeBursts
Definition: dram_ctrl.hh:1112
const PacketPtr pkt
This comes from the outside world.
Definition: dram_ctrl.hh:618
void scheduleWakeUpEvent(Tick exit_delay)
schedule and event to wake-up from power-down or self-refresh and update bank timing parameters ...
Definition: dram_ctrl.cc:2308
Stats::Histogram rdPerTurnAround
Definition: dram_ctrl.hh:1147
Rank class includes a vector of banks.
Definition: dram_ctrl.hh:332
Stats::Scalar bytesWritten
Definition: dram_ctrl.hh:1152
bool inLowPowerState
rank is in or transitioning to power-down or self-refresh
Definition: dram_ctrl.hh:392
libDRAMPower powerlib
Definition: drampower.hh:94
BusState selectNextBusState()
Returns next bus direction (READ or WRITE) based on configured policy.
Definition: mem_ctrl.cc:241
MemoryPort port
Our incoming port, for a multi-ported controller add a crossbar in front of it.
Definition: dram_ctrl.hh:123
void flushCmdList()
Push command out of cmdList queue that are scheduled at or before curTick() to DRAMPower library All ...
Definition: dram_ctrl.cc:1950
const Tick tBURST
Definition: dram_ctrl.hh:1025
Stats::Scalar refreshEnergy
Definition: dram_ctrl.hh:283
DRAMPacketQueue::iterator chooseNext(DRAMPacketQueue &queue, Tick extra_col_delay)
The memory schduler/arbiter - picks which request needs to go next, based on the specified policy suc...
Definition: dram_ctrl.cc:752

Generated on Thu May 28 2020 16:21:34 for gem5 by doxygen 1.8.13