gem5  v20.0.0.3
pipeline.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2014 ARM Limited
3  * All rights reserved
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions are
16  * met: redistributions of source code must retain the above copyright
17  * notice, this list of conditions and the following disclaimer;
18  * redistributions in binary form must reproduce the above copyright
19  * notice, this list of conditions and the following disclaimer in the
20  * documentation and/or other materials provided with the distribution;
21  * neither the name of the copyright holders nor the names of its
22  * contributors may be used to endorse or promote products derived from
23  * this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include "cpu/minor/pipeline.hh"
39 
40 #include <algorithm>
41 
42 #include "cpu/minor/decode.hh"
43 #include "cpu/minor/execute.hh"
44 #include "cpu/minor/fetch1.hh"
45 #include "cpu/minor/fetch2.hh"
46 #include "debug/Drain.hh"
47 #include "debug/MinorCPU.hh"
48 #include "debug/MinorTrace.hh"
49 #include "debug/Quiesce.hh"
50 
51 namespace Minor
52 {
53 
54 Pipeline::Pipeline(MinorCPU &cpu_, MinorCPUParams &params) :
55  Ticked(cpu_, &(cpu_.BaseCPU::numCycles)),
56  cpu(cpu_),
57  allow_idling(params.enableIdling),
58  f1ToF2(cpu.name() + ".f1ToF2", "lines",
59  params.fetch1ToFetch2ForwardDelay),
60  f2ToF1(cpu.name() + ".f2ToF1", "prediction",
61  params.fetch1ToFetch2BackwardDelay, true),
62  f2ToD(cpu.name() + ".f2ToD", "insts",
63  params.fetch2ToDecodeForwardDelay),
64  dToE(cpu.name() + ".dToE", "insts",
65  params.decodeToExecuteForwardDelay),
66  eToF1(cpu.name() + ".eToF1", "branch",
67  params.executeBranchDelay),
68  execute(cpu.name() + ".execute", cpu, params,
69  dToE.output(), eToF1.input()),
70  decode(cpu.name() + ".decode", cpu, params,
71  f2ToD.output(), dToE.input(), execute.inputBuffer),
72  fetch2(cpu.name() + ".fetch2", cpu, params,
73  f1ToF2.output(), eToF1.output(), f2ToF1.input(), f2ToD.input(),
74  decode.inputBuffer),
75  fetch1(cpu.name() + ".fetch1", cpu, params,
76  eToF1.output(), f1ToF2.input(), f2ToF1.output(), fetch2.inputBuffer),
77  activityRecorder(cpu.name() + ".activity", Num_StageId,
78  /* The max depth of inter-stage FIFOs */
79  std::max(params.fetch1ToFetch2ForwardDelay,
80  std::max(params.fetch2ToDecodeForwardDelay,
81  std::max(params.decodeToExecuteForwardDelay,
82  params.executeBranchDelay)))),
83  needToSignalDrained(false)
84 {
85  if (params.fetch1ToFetch2ForwardDelay < 1) {
86  fatal("%s: fetch1ToFetch2ForwardDelay must be >= 1 (%d)\n",
87  cpu.name(), params.fetch1ToFetch2ForwardDelay);
88  }
89 
90  if (params.fetch2ToDecodeForwardDelay < 1) {
91  fatal("%s: fetch2ToDecodeForwardDelay must be >= 1 (%d)\n",
92  cpu.name(), params.fetch2ToDecodeForwardDelay);
93  }
94 
95  if (params.decodeToExecuteForwardDelay < 1) {
96  fatal("%s: decodeToExecuteForwardDelay must be >= 1 (%d)\n",
97  cpu.name(), params.decodeToExecuteForwardDelay);
98  }
99 
100  if (params.executeBranchDelay < 1) {
101  fatal("%s: executeBranchDelay must be >= 1\n",
102  cpu.name(), params.executeBranchDelay);
103  }
104 }
105 
106 void
108 {
110 
111  fetch2.regStats();
112 }
113 
114 void
116 {
117  fetch1.minorTrace();
118  f1ToF2.minorTrace();
119  f2ToF1.minorTrace();
120  fetch2.minorTrace();
121  f2ToD.minorTrace();
122  decode.minorTrace();
123  dToE.minorTrace();
125  eToF1.minorTrace();
127 }
128 
129 void
131 {
132  /* Note that it's important to evaluate the stages in order to allow
133  * 'immediate', 0-time-offset TimeBuffer activity to be visible from
134  * later stages to earlier ones in the same cycle */
135  execute.evaluate();
136  decode.evaluate();
137  fetch2.evaluate();
138  fetch1.evaluate();
139 
140  if (DTRACE(MinorTrace))
141  minorTrace();
142 
143  /* Update the time buffers after the stages */
144  f1ToF2.evaluate();
145  f2ToF1.evaluate();
146  f2ToD.evaluate();
147  dToE.evaluate();
148  eToF1.evaluate();
149 
150  /* The activity recorder must be be called after all the stages and
151  * before the idler (which acts on the advice of the activity recorder */
153 
154  if (allow_idling) {
155  /* Become idle if we can but are not draining */
157  DPRINTF(Quiesce, "Suspending as the processor is idle\n");
158  stop();
159  }
160 
161  /* Deactivate all stages. Note that the stages *could*
162  * activate and deactivate themselves but that's fraught
163  * with additional difficulty.
164  * As organised herre */
170  }
171 
172  if (needToSignalDrained) /* Must be draining */
173  {
174  DPRINTF(Drain, "Still draining\n");
175  if (isDrained()) {
176  DPRINTF(Drain, "Signalling end of draining\n");
178  needToSignalDrained = false;
179  stop();
180  }
181  }
182 }
183 
186 {
187  return fetch1.getIcachePort();
188 }
189 
192 {
193  return execute.getDcachePort();
194 }
195 
196 void
198 {
199  fetch1.wakeupFetch(tid);
200 }
201 
202 bool
204 {
205  DPRINTF(MinorCPU, "Draining pipeline by halting inst fetches. "
206  " Execution should drain naturally\n");
207 
208  execute.drain();
209 
210  /* Make sure that needToSignalDrained isn't accidentally set if we
211  * are 'pre-drained' */
212  bool drained = isDrained();
213  needToSignalDrained = !drained;
214 
215  return drained;
216 }
217 
218 void
220 {
221  DPRINTF(Drain, "Drain resume\n");
222 
223  for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
224  fetch1.wakeupFetch(tid);
225  }
226 
228 }
229 
230 bool
232 {
233  bool fetch1_drained = fetch1.isDrained();
234  bool fetch2_drained = fetch2.isDrained();
235  bool decode_drained = decode.isDrained();
236  bool execute_drained = execute.isDrained();
237 
238  bool f1_to_f2_drained = f1ToF2.empty();
239  bool f2_to_f1_drained = f2ToF1.empty();
240  bool f2_to_d_drained = f2ToD.empty();
241  bool d_to_e_drained = dToE.empty();
242 
243  bool ret = fetch1_drained && fetch2_drained &&
244  decode_drained && execute_drained &&
245  f1_to_f2_drained && f2_to_f1_drained &&
246  f2_to_d_drained && d_to_e_drained;
247 
248  DPRINTF(MinorCPU, "Pipeline undrained stages state:%s%s%s%s%s%s%s%s\n",
249  (fetch1_drained ? "" : " Fetch1"),
250  (fetch2_drained ? "" : " Fetch2"),
251  (decode_drained ? "" : " Decode"),
252  (execute_drained ? "" : " Execute"),
253  (f1_to_f2_drained ? "" : " F1->F2"),
254  (f2_to_f1_drained ? "" : " F2->F1"),
255  (f2_to_d_drained ? "" : " F2->D"),
256  (d_to_e_drained ? "" : " D->E")
257  );
258 
259  return ret;
260 }
261 
262 }
void signalDrainDone()
Signal from Pipeline that MinorCPU should signal that a drain is complete and set its drainState...
Definition: cpu.cc:195
#define DPRINTF(x,...)
Definition: trace.hh:225
void drainResume()
Definition: pipeline.cc:219
#define fatal(...)
This implements a cprintf based fatal() function.
Definition: logging.hh:171
const std::string & name()
Definition: trace.cc:50
static void output(const char *filename)
Definition: debug.cc:60
ThreadID numThreads
Number of threads we&#39;re actually simulating (<= SMT_MAX_THREADS).
Definition: base.hh:374
Latch< ForwardInstData > f2ToD
Definition: pipeline.hh:79
Latch< BranchData > f2ToF1
Definition: pipeline.hh:78
All the fun of executing instructions from Decode and sending branch/new instruction stream info...
void minorTrace() const
Definition: fetch2.cc:642
MinorCPU::MinorCPUPort & getInstPort()
Functions below here are BaseCPU operations passed on to pipeline stages.
Definition: pipeline.cc:185
Overload hash function for BasicBlockRange type.
Definition: vec_reg.hh:587
Fetch2 receives lines of data from Fetch1, separates them into instructions and passes them to Decode...
MinorCPU::MinorCPUPort & getDataPort()
Return the DcachePort belonging to Execute for the CPU.
Definition: pipeline.cc:191
Minor contains all the definitions within the MinorCPU apart from the CPU class itself.
Definition: activity.cc:44
Latch< ForwardInstData > dToE
Definition: pipeline.hh:80
Latch< BranchData > eToF1
Definition: pipeline.hh:81
bool isDrained()
Test to see if the CPU is drained.
Definition: pipeline.cc:231
bool isDrained()
Is this stage drained? For Decoed, draining is initiated by Execute halting Fetch1 causing Fetch2 to ...
Definition: decode.cc:325
Latch< ForwardLineData > f1ToF2
Definition: pipeline.hh:77
Execute execute
Definition: pipeline.hh:83
Decode collects macro-ops from Fetch2 and splits them into micro-ops passed to Execute.
void minorTrace() const
Definition: decode.cc:336
MinorActivityRecorder activityRecorder
Activity recording for the pipeline.
Definition: pipeline.hh:91
void deactivateStage(const int idx)
Deactivates a stage.
Definition: activity.cc:107
Ticked attaches gem5&#39;s event queue/scheduler to evaluate calls and provides a start/stop interface to...
Provide a non-protected base class for Minor&#39;s Ports as derived classes are created by Fetch1 and Exe...
Definition: cpu.hh:98
bool needToSignalDrained
True after drain is called but draining isn&#39;t complete.
Definition: pipeline.hh:105
void stop()
Cancel the next tick event and issue no more.
bool drain()
Try to drain the CPU.
Definition: pipeline.cc:203
void minorTrace() const
Definition: pipeline.cc:115
void drainResume()
Definition: execute.cc:1773
bool isDrained()
Is this stage drained? For Fetch2, draining is initiated by Execute halting Fetch1 causing Fetch2 to ...
Definition: fetch2.cc:594
#define DTRACE(x)
Definition: trace.hh:223
MinorCPU::MinorCPUPort & getIcachePort()
Returns the IcachePort owned by this Fetch1.
Definition: fetch1.hh:393
MinorCPU & cpu
Definition: pipeline.hh:72
void evaluate()
Ticked interface.
Definition: activity.hh:58
Decode decode
Definition: pipeline.hh:84
void regStats()
Stats registering.
Definition: pipeline.cc:107
Fetch1 is responsible for fetching "lines" from memory and passing them to Fetch2.
void wakeupFetch(ThreadID tid)
Wake up the Fetch unit.
Definition: pipeline.cc:197
int16_t ThreadID
Thread index/ID type.
Definition: types.hh:225
virtual const std::string name() const
Definition: sim_object.hh:129
void regStats()
Register {num,ticks}Cycles if necessary.
void evaluate()
Pass on input/buffer data to the output if you can.
Definition: decode.cc:122
Pipeline(MinorCPU &cpu_, MinorCPUParams &params)
Definition: pipeline.cc:54
bool allow_idling
Allow cycles to be skipped when the pipeline is idle.
Definition: pipeline.hh:75
void minorTrace() const
Definition: execute.cc:1645
Fetch2 fetch2
Definition: pipeline.hh:85
bool active()
Returns if the CPU should be active.
Definition: activity.hh:88
The constructed pipeline.
void wakeupFetch(ThreadID tid)
Initiate fetch1 fetching.
Definition: fetch1.cc:704
bool isDrained()
Is this stage drained? For Fetch1, draining is initiated by Execute signalling a branch with the reas...
Definition: fetch1.cc:718
MinorCPU is an in-order CPU model with four fixed pipeline stages:
Definition: cpu.hh:77
void evaluate()
Pass on input/buffer data to the output if you can.
Definition: fetch1.cc:563
bool isDrained()
After thread suspension, has Execute been drained of in-flight instructions and memory accesses...
Definition: execute.cc:1838
void evaluate() override
A custom evaluate allows report in the right place (between stages and pipeline advance) ...
Definition: pipeline.cc:130
void evaluate()
Pass on input/buffer data to the output if you can.
Definition: execute.cc:1413
void minorTrace() const
Definition: fetch1.cc:752
Fetch1 fetch1
Definition: pipeline.hh:86
unsigned int drain()
Like the drain interface on SimObject.
Definition: execute.cc:1816
MinorCPU::MinorCPUPort & getDcachePort()
Returns the DcachePort owned by this Execute to pass upwards.
Definition: execute.cc:1881
void evaluate()
Pass on input/buffer data to the output if you can.
Definition: fetch2.cc:237
void regStats()
Definition: fetch2.cc:606

Generated on Fri Jul 3 2020 15:53:00 for gem5 by doxygen 1.8.13