gem5  v20.0.0.3
RubyPort.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012-2013,2019 ARM Limited
3  * All rights reserved.
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15  * Copyright (c) 2011 Mark D. Hill and David A. Wood
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
43 
45 #include "debug/Config.hh"
46 #include "debug/Drain.hh"
47 #include "debug/Ruby.hh"
48 #include "mem/ruby/protocol/AccessPermission.hh"
50 #include "mem/simple_mem.hh"
51 #include "sim/full_system.hh"
52 #include "sim/system.hh"
53 
55  : ClockedObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
56  m_controller(NULL), m_mandatory_q_ptr(NULL),
57  m_usingRubyTester(p->using_ruby_tester), system(p->system),
58  pioMasterPort(csprintf("%s.pio-master-port", name()), this),
59  pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
60  memMasterPort(csprintf("%s.mem-master-port", name()), this),
61  memSlavePort(csprintf("%s-mem-slave-port", name()), this,
62  p->ruby_system->getAccessBackingStore(), -1,
63  p->no_retry_on_stall),
64  gotAddrRanges(p->port_master_connection_count),
65  m_isCPUSequencer(p->is_cpu_sequencer)
66 {
67  assert(m_version != -1);
68 
69  // create the slave ports based on the number of connected ports
70  for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
71  slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
72  i), this, p->ruby_system->getAccessBackingStore(),
73  i, p->no_retry_on_stall));
74  }
75 
76  // create the master ports based on the number of connected ports
77  for (size_t i = 0; i < p->port_master_connection_count; ++i) {
78  master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
79  name(), i), this));
80  }
81 }
82 
83 void
85 {
86  assert(m_controller != NULL);
88 }
89 
90 Port &
91 RubyPort::getPort(const std::string &if_name, PortID idx)
92 {
93  if (if_name == "mem_master_port") {
94  return memMasterPort;
95  } else if (if_name == "pio_master_port") {
96  return pioMasterPort;
97  } else if (if_name == "mem_slave_port") {
98  return memSlavePort;
99  } else if (if_name == "pio_slave_port") {
100  return pioSlavePort;
101  } else if (if_name == "master") {
102  // used by the x86 CPUs to connect the interrupt PIO and interrupt
103  // slave port
104  if (idx >= static_cast<PortID>(master_ports.size())) {
105  panic("RubyPort::getPort master: unknown index %d\n", idx);
106  }
107 
108  return *master_ports[idx];
109  } else if (if_name == "slave") {
110  // used by the CPUs to connect the caches to the interconnect, and
111  // for the x86 case also the interrupt master
112  if (idx >= static_cast<PortID>(slave_ports.size())) {
113  panic("RubyPort::getPort slave: unknown index %d\n", idx);
114  }
115 
116  return *slave_ports[idx];
117  }
118 
119  // pass it along to our super class
120  return ClockedObject::getPort(if_name, idx);
121 }
122 
123 RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
124  RubyPort *_port)
125  : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
126  reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
127 {
128  DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
129 }
130 
131 RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
132  RubyPort *_port)
133  : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
134 {
135  DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
136 }
137 
138 RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
139  RubyPort *_port)
140  : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
141  reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
142 {
143  DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
144 }
145 
146 RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
147  bool _access_backing_store, PortID id,
148  bool _no_retry_on_stall)
149  : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
150  access_backing_store(_access_backing_store),
151  no_retry_on_stall(_no_retry_on_stall)
152 {
153  DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
154 }
155 
156 bool
158 {
159  RubyPort *rp = static_cast<RubyPort *>(&owner);
160  DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
161 
162  // send next cycle
164  pkt, curTick() + rp->m_ruby_system->clockPeriod());
165  return true;
166 }
167 
169 {
170  // got a response from a device
171  assert(pkt->isResponse());
172 
173  // First we must retrieve the request port from the sender State
174  RubyPort::SenderState *senderState =
176  MemSlavePort *port = senderState->port;
177  assert(port != NULL);
178  delete senderState;
179 
180  // In FS mode, ruby memory will receive pio responses from devices
181  // and it must forward these responses back to the particular CPU.
182  DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n",
183  pkt->getAddr(), port->name());
184 
185  // attempt to send the response in the next cycle
186  RubyPort *rp = static_cast<RubyPort *>(&owner);
187  port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
188 
189  return true;
190 }
191 
192 bool
194 {
195  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
196 
197  for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
198  AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
199  for (auto it = l.begin(); it != l.end(); ++it) {
200  if (it->contains(pkt->getAddr())) {
201  // generally it is not safe to assume success here as
202  // the port could be blocked
203  bool M5_VAR_USED success =
204  ruby_port->master_ports[i]->sendTimingReq(pkt);
205  assert(success);
206  return true;
207  }
208  }
209  }
210  panic("Should never reach here!\n");
211 }
212 
213 Tick
215 {
216  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
217  // Only atomic_noncaching mode supported!
218  if (!ruby_port->system->bypassCaches()) {
219  panic("Ruby supports atomic accesses only in noncaching mode\n");
220  }
221 
222  for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
223  AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
224  for (auto it = l.begin(); it != l.end(); ++it) {
225  if (it->contains(pkt->getAddr())) {
226  return ruby_port->master_ports[i]->sendAtomic(pkt);
227  }
228  }
229  }
230  panic("Could not find address in Ruby PIO address ranges!\n");
231 }
232 
233 bool
235 {
236  DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
237  pkt->getAddr(), id);
238  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
239 
240  if (pkt->cacheResponding())
241  panic("RubyPort should never see request with the "
242  "cacheResponding flag set\n");
243 
244  // ruby doesn't support cache maintenance operations at the
245  // moment, as a workaround, we respond right away
246  if (pkt->req->isCacheMaintenance()) {
247  warn_once("Cache maintenance operations are not supported in Ruby.\n");
248  pkt->makeResponse();
249  schedTimingResp(pkt, curTick());
250  return true;
251  }
252  // Check for pio requests and directly send them to the dedicated
253  // pio port.
254  if (pkt->cmd != MemCmd::MemFenceReq) {
255  if (!isPhysMemAddress(pkt->getAddr())) {
256  assert(ruby_port->memMasterPort.isConnected());
257  DPRINTF(RubyPort, "Request address %#x assumed to be a "
258  "pio address\n", pkt->getAddr());
259 
260  // Save the port in the sender state object to be used later to
261  // route the response
262  pkt->pushSenderState(new SenderState(this));
263 
264  // send next cycle
265  RubySystem *rs = ruby_port->m_ruby_system;
266  ruby_port->memMasterPort.schedTimingReq(pkt,
267  curTick() + rs->clockPeriod());
268  return true;
269  }
270 
271  assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
273  }
274 
275  // Submit the ruby request
276  RequestStatus requestStatus = ruby_port->makeRequest(pkt);
277 
278  // If the request successfully issued then we should return true.
279  // Otherwise, we need to tell the port to retry at a later point
280  // and return false.
281  if (requestStatus == RequestStatus_Issued) {
282  // Save the port in the sender state object to be used later to
283  // route the response
284  pkt->pushSenderState(new SenderState(this));
285 
286  DPRINTF(RubyPort, "Request %s address %#x issued\n", pkt->cmdString(),
287  pkt->getAddr());
288  return true;
289  }
290 
291  if (pkt->cmd != MemCmd::MemFenceReq) {
293  "Request %s for address %#x did not issue because %s\n",
294  pkt->cmdString(), pkt->getAddr(),
295  RequestStatus_to_string(requestStatus));
296  }
297 
298  addToRetryList();
299 
300  return false;
301 }
302 
303 Tick
305 {
306  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
307  // Only atomic_noncaching mode supported!
308  if (!ruby_port->system->bypassCaches()) {
309  panic("Ruby supports atomic accesses only in noncaching mode\n");
310  }
311 
312  // Check for pio requests and directly send them to the dedicated
313  // pio port.
314  if (pkt->cmd != MemCmd::MemFenceReq) {
315  if (!isPhysMemAddress(pkt->getAddr())) {
316  assert(ruby_port->memMasterPort.isConnected());
317  DPRINTF(RubyPort, "Request address %#x assumed to be a "
318  "pio address\n", pkt->getAddr());
319 
320  // Save the port in the sender state object to be used later to
321  // route the response
322  pkt->pushSenderState(new SenderState(this));
323 
324  // send next cycle
325  Tick req_ticks = ruby_port->memMasterPort.sendAtomic(pkt);
326  return ruby_port->ticksToCycles(req_ticks);
327  }
328 
329  assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
331  }
332 
333  // Find appropriate directory for address
334  // This assumes that protocols have a Directory machine,
335  // which has its memPort hooked up to memory. This can
336  // fail for some custom protocols.
337  MachineID id = ruby_port->m_controller->mapAddressToMachine(
338  pkt->getAddr(), MachineType_Directory);
339  RubySystem *rs = ruby_port->m_ruby_system;
340  AbstractController *directory =
341  rs->m_abstract_controls[id.getType()][id.getNum()];
342  Tick latency = directory->recvAtomic(pkt);
344  rs->getPhysMem()->access(pkt);
345  return latency;
346 }
347 
348 void
350 {
351  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
352 
353  //
354  // Unless the requestor do not want retries (e.g., the Ruby tester),
355  // record the stalled M5 port for later retry when the sequencer
356  // becomes free.
357  //
358  if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
359  ruby_port->addToRetryList(this);
360  }
361 }
362 
363 void
365 {
366  DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
367 
368  RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
369  RubySystem *rs = rp->m_ruby_system;
370 
371  // Check for pio requests and directly send them to the dedicated
372  // pio port.
373  if (!isPhysMemAddress(pkt->getAddr())) {
374  DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
375  assert(rp->pioMasterPort.isConnected());
376  rp->pioMasterPort.sendFunctional(pkt);
377  return;
378  }
379 
380  assert(pkt->getAddr() + pkt->getSize() <=
382 
383  if (access_backing_store) {
384  // The attached physmem contains the official version of data.
385  // The following command performs the real functional access.
386  // This line should be removed once Ruby supplies the official version
387  // of data.
388  rs->getPhysMem()->functionalAccess(pkt);
389  } else {
390  bool accessSucceeded = false;
391  bool needsResponse = pkt->needsResponse();
392 
393  // Do the functional access on ruby memory
394  if (pkt->isRead()) {
395  accessSucceeded = rs->functionalRead(pkt);
396  } else if (pkt->isWrite()) {
397  accessSucceeded = rs->functionalWrite(pkt);
398  } else {
399  panic("Unsupported functional command %s\n", pkt->cmdString());
400  }
401 
402  // Unless the requester explicitly said otherwise, generate an error if
403  // the functional request failed
404  if (!accessSucceeded && !pkt->suppressFuncError()) {
405  fatal("Ruby functional %s failed for address %#x\n",
406  pkt->isWrite() ? "write" : "read", pkt->getAddr());
407  }
408 
409  // turn packet around to go back to requester if response expected
410  if (needsResponse) {
411  // The pkt is already turned into a reponse if the directory
412  // forwarded the request to the memory controller (see
413  // AbstractController::functionalMemoryWrite and
414  // AbstractMemory::functionalAccess)
415  if (!pkt->isResponse())
416  pkt->makeResponse();
417  pkt->setFunctionalResponseStatus(accessSucceeded);
418  }
419 
420  DPRINTF(RubyPort, "Functional access %s!\n",
421  accessSucceeded ? "successful":"failed");
422  }
423 }
424 
425 void
427 {
428  DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
429  pkt->getAddr());
430 
431  // The packet was destined for memory and has not yet been turned
432  // into a response
433  assert(system->isMemAddr(pkt->getAddr()));
434  assert(pkt->isRequest());
435 
436  // First we must retrieve the request port from the sender State
437  RubyPort::SenderState *senderState =
439  MemSlavePort *port = senderState->port;
440  assert(port != NULL);
441  delete senderState;
442 
443  port->hitCallback(pkt);
444 
445  trySendRetries();
446 }
447 
448 void
450 {
451  //
452  // If we had to stall the MemSlavePorts, wake them up because the sequencer
453  // likely has free resources now.
454  //
455  if (!retryList.empty()) {
456  // Record the current list of ports to retry on a temporary list
457  // before calling sendRetryReq on those ports. sendRetryReq will cause
458  // an immediate retry, which may result in the ports being put back on
459  // the list. Therefore we want to clear the retryList before calling
460  // sendRetryReq.
462 
463  retryList.clear();
464 
465  for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
467  "Sequencer may now be free. SendRetry to port %s\n",
468  (*i)->name());
469  (*i)->sendRetryReq();
470  }
471  }
472 }
473 
474 void
476 {
477  //If we weren't able to drain before, we might be able to now.
478  if (drainState() == DrainState::Draining) {
479  unsigned int drainCount = outstandingCount();
480  DPRINTF(Drain, "Drain count: %u\n", drainCount);
481  if (drainCount == 0) {
482  DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
483  signalDrainDone();
484  }
485  }
486 }
487 
490 {
491  if (isDeadlockEventScheduled()) {
493  }
494 
495  //
496  // If the RubyPort is not empty, then it needs to clear all outstanding
497  // requests before it should call signalDrainDone()
498  //
499  DPRINTF(Config, "outstanding count %d\n", outstandingCount());
500  if (outstandingCount() > 0) {
501  DPRINTF(Drain, "RubyPort not drained\n");
502  return DrainState::Draining;
503  } else {
504  return DrainState::Drained;
505  }
506 }
507 
508 void
510 {
511  bool needsResponse = pkt->needsResponse();
512 
513  // Unless specified at configuraiton, all responses except failed SC
514  // and Flush operations access M5 physical memory.
515  bool accessPhysMem = access_backing_store;
516 
517  if (pkt->isLLSC()) {
518  if (pkt->isWrite()) {
519  if (pkt->req->getExtraData() != 0) {
520  //
521  // Successful SC packets convert to normal writes
522  //
523  pkt->convertScToWrite();
524  } else {
525  //
526  // Failed SC packets don't access physical memory and thus
527  // the RubyPort itself must convert it to a response.
528  //
529  accessPhysMem = false;
530  }
531  } else {
532  //
533  // All LL packets convert to normal loads so that M5 PhysMem does
534  // not lock the blocks.
535  //
536  pkt->convertLlToRead();
537  }
538  }
539 
540  // Flush, acquire, release requests don't access physical memory
541  if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) {
542  accessPhysMem = false;
543  }
544 
545  if (pkt->req->isKernel()) {
546  accessPhysMem = false;
547  needsResponse = true;
548  }
549 
550  DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
551 
552  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
553  RubySystem *rs = ruby_port->m_ruby_system;
554  if (accessPhysMem) {
555  rs->getPhysMem()->access(pkt);
556  } else if (needsResponse) {
557  pkt->makeResponse();
558  }
559 
560  // turn packet around to go back to requester if response expected
561  if (needsResponse) {
562  DPRINTF(RubyPort, "Sending packet back over port\n");
563  // Send a response in the same cycle. There is no need to delay the
564  // response because the response latency is already incurred in the
565  // Ruby protocol.
566  schedTimingResp(pkt, curTick());
567  } else {
568  delete pkt;
569  }
570 
571  DPRINTF(RubyPort, "Hit callback done!\n");
572 }
573 
576 {
577  // at the moment the assumption is that the master does not care
578  AddrRangeList ranges;
579  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
580 
581  for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
582  ranges.splice(ranges.begin(),
583  ruby_port->master_ports[i]->getAddrRanges());
584  }
585  for (const auto M5_VAR_USED &r : ranges)
586  DPRINTF(RubyPort, "%s\n", r.to_string());
587  return ranges;
588 }
589 
590 bool
592 {
593  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
594  return ruby_port->system->isMemAddr(addr);
595 }
596 
597 void
599 {
600  DPRINTF(RubyPort, "Sending invalidations.\n");
601  // Allocate the invalidate request and packet on the stack, as it is
602  // assumed they will not be modified or deleted by receivers.
603  // TODO: should this really be using funcMasterId?
604  auto request = std::make_shared<Request>(
605  address, RubySystem::getBlockSizeBytes(), 0,
607 
608  // Use a single packet to signal all snooping ports of the invalidation.
609  // This assumes that snooping ports do NOT modify the packet/request
610  Packet pkt(request, MemCmd::InvalidateReq);
611  for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
612  // check if the connected master port is snooping
613  if ((*p)->isSnooping()) {
614  // send as a snoop request
615  (*p)->sendTimingSnoopReq(&pkt);
616  }
617  }
618 }
619 
620 void
622 {
623  RubyPort &r = static_cast<RubyPort &>(owner);
624  r.gotAddrRanges--;
625  if (r.gotAddrRanges == 0 && FullSystem) {
627  }
628 }
629 
630 
631 int
633 {
634  int num_written = 0;
635  for (auto port : slave_ports) {
636  if (port->trySatisfyFunctional(func_pkt)) {
637  num_written += 1;
638  }
639  }
640  return num_written;
641 }
std::vector< MemSlavePort * > slave_ports
Definition: RubyPort.hh:194
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:163
RubyTester::SenderState SenderState
Definition: Check.cc:37
#define DPRINTF(x,...)
Definition: trace.hh:225
void functionalAccess(PacketPtr pkt)
Perform an untimed memory read or write without changing anything but the memory itself.
Ports are used to interface objects to each other.
Definition: port.hh:56
Tick recvAtomic(PacketPtr pkt)
bool suppressFuncError() const
Definition: packet.hh:684
SimObject & owner
Definition: port.hh:264
bool recvTimingReq(PacketPtr pkt)
Receive a timing request from the peer.
Definition: RubyPort.cc:234
void sendRangeChange() const
Called by the owner to send a range change.
Definition: port.hh:282
#define fatal(...)
This implements a cprintf based fatal() function.
Definition: logging.hh:171
const std::string & name()
Definition: trace.cc:50
PioSlavePort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:131
Bitfield< 7 > i
SimpleMemory * getPhysMem()
Definition: RubySystem.hh:65
void init() override
init() is called after all C++ SimObjects have been created and all ports are connected.
Definition: RubyPort.cc:84
MachineID mapAddressToMachine(Addr addr, MachineType mtype) const
Map an address to the correct MachineID.
Port & getPort(const std::string &if_name, PortID idx=InvalidPortID) override
Get a port with a given name and index.
Definition: RubyPort.cc:91
AbstractController * m_controller
Definition: RubyPort.hh:189
std::vector< MemSlavePort * > retryList
Definition: RubyPort.hh:222
bool recvTimingResp(PacketPtr pkt)
Receive a timing response from the peer.
Definition: RubyPort.cc:168
The QueuedMasterPort combines two queues, a request queue and a snoop response queue, that both share the same port.
Definition: qport.hh:106
ip6_addr_t addr
Definition: inet.hh:330
bool cacheResponding() const
Definition: packet.hh:585
bool FullSystem
The FullSystem variable can be used to determine the current mode of simulation.
Definition: root.cc:132
bool functionalRead(Packet *ptr)
Definition: RubySystem.cc:413
void trySendRetries()
Definition: RubyPort.cc:449
AddrRangeList getAddrRanges() const
Get a list of the non-overlapping address ranges the owner is responsible for.
Definition: RubyPort.cc:575
virtual int outstandingCount() const =0
bool isConnected() const
Is this port currently connected to a peer?
Definition: port.hh:124
A queued port is a port that has an infinite queue for outgoing packets and thus decouples the module...
Definition: qport.hh:58
bool functionalWrite(Packet *ptr)
Definition: RubySystem.cc:526
Tick clockPeriod() const
bool isWrite() const
Definition: packet.hh:523
bool recvTimingReq(PacketPtr pkt)
Receive a timing request from the peer.
Definition: RubyPort.cc:193
bool isRead() const
Definition: packet.hh:522
RubySystem * m_ruby_system
Definition: RubyPort.hh:187
SimpleMemory declaration.
RubyPortParams Params
Definition: RubyPort.hh:145
This master id is used for functional requests that don&#39;t come from a particular device.
Definition: request.hh:208
DrainState
Object drain/handover states.
Definition: drain.hh:71
STL vector class.
Definition: stl.hh:37
RequestPtr req
A pointer to the original request.
Definition: packet.hh:321
DrainState drainState() const
Return the current drain state of an object.
Definition: drain.hh:308
void setFunctionalResponseStatus(bool success)
Definition: packet.hh:955
unsigned getSize() const
Definition: packet.hh:730
bool onRetryList(MemSlavePort *port)
Definition: RubyPort.hh:197
bool isRequest() const
Definition: packet.hh:525
Draining buffers pending serialization/handover.
Tick curTick()
The current simulated tick.
Definition: core.hh:44
void convertScToWrite()
It has been determined that the SC packet should successfully update memory.
Definition: packet.hh:766
virtual Port & getPort(const std::string &if_name, PortID idx=InvalidPortID)
Get a port with a given name and index.
Definition: sim_object.cc:123
std::string csprintf(const char *format, const Args &...args)
Definition: cprintf.hh:158
bool needsResponse() const
Definition: packet.hh:536
void hitCallback(PacketPtr pkt)
Definition: RubyPort.cc:509
void ruby_eviction_callback(Addr address)
Definition: RubyPort.cc:598
void addToRetryList(MemSlavePort *port)
Definition: RubyPort.hh:202
void schedTimingResp(PacketPtr pkt, Tick when)
Schedule the sending of a timing response.
Definition: qport.hh:90
PioSlavePort pioSlavePort
Definition: RubyPort.hh:209
virtual MessageBuffer * getMandatoryQueue() const =0
MemMasterPort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:138
bool isMemAddr(Addr addr) const
Check if a physical address is within a range of a memory that is part of the global address map...
Definition: system.cc:354
uint64_t Tick
Tick count type.
Definition: types.hh:61
Tick recvAtomic(PacketPtr pkt)
Receive an atomic request packet from the peer.
Definition: RubyPort.cc:304
System * system
Definition: RubyPort.hh:192
bool isResponse() const
Definition: packet.hh:526
The ClockedObject class extends the SimObject with a clock and accessor functions to relate ticks to ...
unsigned int gotAddrRanges
Definition: RubyPort.hh:212
uint32_t m_version
Definition: RubyPort.hh:188
void access(PacketPtr pkt)
Perform an untimed memory access and update all the state (e.g.
std::vector< std::map< uint32_t, AbstractController * > > m_abstract_controls
Definition: RubySystem.hh:140
virtual bool isDeadlockEventScheduled() const =0
Addr getAddr() const
Definition: packet.hh:720
Addr getOffset(Addr addr)
Definition: Address.cc:48
virtual void descheduleDeadlockEvent()=0
void recvRangeChange()
Called to receive an address range change from the peer slave port.
Definition: RubyPort.cc:621
void ruby_hit_callback(PacketPtr pkt)
Definition: RubyPort.cc:426
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:140
Tick recvAtomic(PacketPtr pkt)
Receive an atomic request packet from the peer.
Definition: RubyPort.cc:214
void convertLlToRead()
When ruby is in use, Ruby will monitor the cache line and the phys memory should treat LL ops as norm...
Definition: packet.hh:778
T safe_cast(U ptr)
Definition: cast.hh:59
A Packet is used to encapsulate a transfer between two objects in the memory system (e...
Definition: packet.hh:249
PioMasterPort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:123
Addr makeLineAddress(Addr addr)
Definition: Address.cc:54
#define warn_once(...)
Definition: logging.hh:212
void recvFunctional(PacketPtr pkt)
Receive a functional request packet from the peer.
Definition: RubyPort.cc:364
Bitfield< 15 > system
Definition: misc.hh:997
PioMasterPort pioMasterPort
Definition: RubyPort.hh:208
bool isLLSC() const
Definition: packet.hh:548
MessageBuffer * m_mandatory_q_ptr
Definition: RubyPort.hh:190
void makeResponse()
Take a request packet and modify it in place to be suitable for returning as a response to that reque...
Definition: packet.hh:931
virtual const std::string name() const
Definition: sim_object.hh:129
void testDrainComplete()
Definition: RubyPort.cc:475
Cycles ticksToCycles(Tick t) const
RubyPort(const Params *p)
Definition: RubyPort.cc:54
const PortID id
A numeric identifier to distinguish ports in a vector, and set to InvalidPortID in case this port is ...
Definition: port.hh:70
MemCmd cmd
The command field of the packet.
Definition: packet.hh:316
bool bypassCaches() const
Should caches be bypassed?
Definition: system.hh:152
void signalDrainDone() const
Signal that an object is drained.
Definition: drain.hh:289
void pushSenderState(SenderState *sender_state)
Push a new sender state to the packet and make the current sender state the predecessor of the new on...
Definition: packet.cc:316
MemMasterPort memMasterPort
Definition: RubyPort.hh:210
SenderState * popSenderState()
Pop the top of the state stack and return a pointer to it.
Definition: packet.cc:324
std::vector< PioMasterPort * > master_ports
Definition: RubyPort.hh:216
int16_t PortID
Port index/ID type, and a symbolic name for an invalid port id.
Definition: types.hh:235
virtual int functionalWrite(Packet *func_pkt)
Definition: RubyPort.cc:632
const std::string & cmdString() const
Return the string name of the cmd field (for debugging and tracing).
Definition: packet.hh:517
MemSlavePort memSlavePort
Definition: RubyPort.hh:211
Tick sendAtomic(PacketPtr pkt)
Send an atomic request packet, where the data is moved and the state is updated in zero time...
Definition: port.hh:423
Bitfield< 0 > p
Running normally.
Bitfield< 9, 8 > rs
bool recvTimingResp(PacketPtr pkt)
Receive a timing response from the peer.
Definition: RubyPort.cc:157
bool isFlush() const
Definition: packet.hh:551
std::vector< MemSlavePort * >::iterator CpuPortIter
Vector of M5 Ports attached to this Ruby port.
Definition: RubyPort.hh:215
Bitfield< 5 > l
static uint32_t getBlockSizeBytes()
Definition: RubySystem.hh:59
DrainState drain() override
Notify an object that it needs to drain its state.
Definition: RubyPort.cc:489
bool isPhysMemAddress(Addr addr) const
Definition: RubyPort.cc:591
MemSlavePort(const std::string &_name, RubyPort *_port, bool _access_backing_store, PortID id, bool _no_retry_on_stall)
Definition: RubyPort.cc:146

Generated on Fri Jul 3 2020 15:53:04 for gem5 by doxygen 1.8.13