gem5  v21.0.1.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Topology.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020 Advanced Micro Devices, Inc.
3  * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are
8  * met: redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer;
10  * redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution;
13  * neither the name of the copyright holders nor the names of its
14  * contributors may be used to endorse or promote products derived from
15  * this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
31 
32 #include <cassert>
33 
34 #include "base/trace.hh"
35 #include "debug/RubyNetwork.hh"
40 
41 const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
42 
43 // Note: In this file, we use the first 2*m_nodes SwitchIDs to
44 // represent the input and output endpoint links. These really are
45 // not 'switches', as they will not have a Switch object allocated for
46 // them. The first m_nodes SwitchIDs are the links into the network,
47 // the second m_nodes set of SwitchIDs represent the the output queues
48 // of the network.
49 
50 Topology::Topology(uint32_t num_nodes, uint32_t num_routers,
51  uint32_t num_vnets,
52  const std::vector<BasicExtLink *> &ext_links,
53  const std::vector<BasicIntLink *> &int_links)
54  : m_nodes(MachineType_base_number(MachineType_NUM)),
55  m_number_of_switches(num_routers), m_vnets(num_vnets),
56  m_ext_link_vector(ext_links), m_int_link_vector(int_links)
57 {
58  // Total nodes/controllers in network
59  assert(m_nodes > 1);
60 
61  // analyze both the internal and external links, create data structures.
62  // The python created external links are bi-directional,
63  // and the python created internal links are uni-directional.
64  // The networks and topology utilize uni-directional links.
65  // Thus each external link is converted to two calls to addLink,
66  // one for each direction.
67  //
68  // External Links
69  for (std::vector<BasicExtLink*>::const_iterator i = ext_links.begin();
70  i != ext_links.end(); ++i) {
71  BasicExtLink *ext_link = (*i);
72  AbstractController *abs_cntrl = ext_link->params().ext_node;
73  BasicRouter *router = ext_link->params().int_node;
74 
75  int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
76  int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
77  int ext_idx2 = ext_idx1 + m_nodes;
78  int int_idx = router->params().router_id + 2*m_nodes;
79 
80  // create the internal uni-directional links in both directions
81  // ext to int
82  addLink(ext_idx1, int_idx, ext_link);
83  // int to ext
84  addLink(int_idx, ext_idx2, ext_link);
85  }
86 
87  // Internal Links
88  for (std::vector<BasicIntLink*>::const_iterator i = int_links.begin();
89  i != int_links.end(); ++i) {
90  BasicIntLink *int_link = (*i);
91  BasicRouter *router_src = int_link->params().src_node;
92  BasicRouter *router_dst = int_link->params().dst_node;
93 
94  PortDirection src_outport = int_link->params().src_outport;
95  PortDirection dst_inport = int_link->params().dst_inport;
96 
97  // Store the IntLink pointers for later
98  m_int_link_vector.push_back(int_link);
99 
100  int src = router_src->params().router_id + 2*m_nodes;
101  int dst = router_dst->params().router_id + 2*m_nodes;
102 
103  // create the internal uni-directional link from src to dst
104  addLink(src, dst, int_link, src_outport, dst_inport);
105  }
106 }
107 
108 void
110 {
111  // Find maximum switchID
112  SwitchID max_switch_id = 0;
113  for (LinkMap::const_iterator i = m_link_map.begin();
114  i != m_link_map.end(); ++i) {
115  std::pair<SwitchID, SwitchID> src_dest = (*i).first;
116  max_switch_id = std::max(max_switch_id, src_dest.first);
117  max_switch_id = std::max(max_switch_id, src_dest.second);
118  }
119 
120  // Initialize weight, latency, and inter switched vectors
121  int num_switches = max_switch_id+1;
122  Matrix topology_weights(m_vnets,
123  std::vector<std::vector<int>>(num_switches,
124  std::vector<int>(num_switches, INFINITE_LATENCY)));
125  Matrix component_latencies(num_switches,
126  std::vector<std::vector<int>>(num_switches,
127  std::vector<int>(m_vnets, -1)));
128  Matrix component_inter_switches(num_switches,
129  std::vector<std::vector<int>>(num_switches,
131 
132  // Set identity weights to zero
133  for (int i = 0; i < topology_weights[0].size(); i++) {
134  for (int v = 0; v < m_vnets; v++) {
135  topology_weights[v][i][i] = 0;
136  }
137  }
138 
139  // Fill in the topology weights and bandwidth multipliers
140  for (auto link_group : m_link_map) {
141  std::pair<int, int> src_dest = link_group.first;
142  std::vector<bool> vnet_done(m_vnets, 0);
143  int src = src_dest.first;
144  int dst = src_dest.second;
145 
146  // Iterate over all links for this source and destination
147  std::vector<LinkEntry> link_entries = link_group.second;
148  for (int l = 0; l < link_entries.size(); l++) {
149  BasicLink* link = link_entries[l].link;
150  if (link->mVnets.size() == 0) {
151  for (int v = 0; v < m_vnets; v++) {
152  // Two links connecting same src and destination
153  // cannot carry same vnets.
154  fatal_if(vnet_done[v], "Two links connecting same src"
155  " and destination cannot support same vnets");
156 
157  component_latencies[src][dst][v] = link->m_latency;
158  topology_weights[v][src][dst] = link->m_weight;
159  vnet_done[v] = true;
160  }
161  } else {
162  for (int v = 0; v < link->mVnets.size(); v++) {
163  int vnet = link->mVnets[v];
164  fatal_if(vnet >= m_vnets, "Not enough virtual networks "
165  "(setting latency and weight for vnet %d)", vnet);
166  // Two links connecting same src and destination
167  // cannot carry same vnets.
168  fatal_if(vnet_done[vnet], "Two links connecting same src"
169  " and destination cannot support same vnets");
170 
171  component_latencies[src][dst][vnet] = link->m_latency;
172  topology_weights[vnet][src][dst] = link->m_weight;
173  vnet_done[vnet] = true;
174  }
175  }
176  }
177  }
178 
179  // Walk topology and hookup the links
180  Matrix dist = shortest_path(topology_weights, component_latencies,
181  component_inter_switches);
182 
183  for (int i = 0; i < topology_weights[0].size(); i++) {
184  for (int j = 0; j < topology_weights[0][i].size(); j++) {
185  std::vector<NetDest> routingMap;
186  routingMap.resize(m_vnets);
187 
188  // Not all sources and destinations are connected
189  // by direct links. We only construct the links
190  // which have been configured in topology.
191  bool realLink = false;
192 
193  for (int v = 0; v < m_vnets; v++) {
194  int weight = topology_weights[v][i][j];
195  if (weight > 0 && weight != INFINITE_LATENCY) {
196  realLink = true;
197  routingMap[v] =
198  shortest_path_to_node(i, j, topology_weights, dist, v);
199  }
200  }
201  // Make one link for each set of vnets between
202  // a given source and destination. We do not
203  // want to create one link for each vnet.
204  if (realLink) {
205  makeLink(net, i, j, routingMap);
206  }
207  }
208  }
209 }
210 
211 void
213  PortDirection src_outport_dirn,
214  PortDirection dst_inport_dirn)
215 {
216  assert(src <= m_number_of_switches+m_nodes+m_nodes);
217  assert(dest <= m_number_of_switches+m_nodes+m_nodes);
218 
219  std::pair<int, int> src_dest_pair;
220  src_dest_pair.first = src;
221  src_dest_pair.second = dest;
222  LinkEntry link_entry;
223 
224  link_entry.link = link;
225  link_entry.src_outport_dirn = src_outport_dirn;
226  link_entry.dst_inport_dirn = dst_inport_dirn;
227 
228  auto lit = m_link_map.find(src_dest_pair);
229  if (lit != m_link_map.end()) {
230  // HeteroGarnet allows multiple links between
231  // same source-destination pair supporting
232  // different vnets. If there is a link already
233  // between a given pair of source and destination
234  // add this new link to it.
235  lit->second.push_back(link_entry);
236  } else {
238  links.push_back(link_entry);
239  m_link_map[src_dest_pair] = links;
240  }
241 }
242 
243 void
245  std::vector<NetDest>& routing_table_entry)
246 {
247  // Make sure we're not trying to connect two end-point nodes
248  // directly together
249  assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
250 
251  std::pair<int, int> src_dest;
252  LinkEntry link_entry;
253 
254  if (src < m_nodes) {
255  src_dest.first = src;
256  src_dest.second = dest;
257  std::vector<LinkEntry> links = m_link_map[src_dest];
258  for (int l = 0; l < links.size(); l++) {
259  link_entry = links[l];
260  std::vector<NetDest> linkRoute;
261  linkRoute.resize(m_vnets);
262  BasicLink *link = link_entry.link;
263  if (link->mVnets.size() == 0) {
264  net->makeExtInLink(src, dest - (2 * m_nodes), link,
265  routing_table_entry);
266  } else {
267  for (int v = 0; v< link->mVnets.size(); v++) {
268  int vnet = link->mVnets[v];
269  linkRoute[vnet] = routing_table_entry[vnet];
270  }
271  net->makeExtInLink(src, dest - (2 * m_nodes), link,
272  linkRoute);
273  }
274  }
275  } else if (dest < 2*m_nodes) {
276  assert(dest >= m_nodes);
277  NodeID node = dest - m_nodes;
278  src_dest.first = src;
279  src_dest.second = dest;
280  std::vector<LinkEntry> links = m_link_map[src_dest];
281  for (int l = 0; l < links.size(); l++) {
282  link_entry = links[l];
283  std::vector<NetDest> linkRoute;
284  linkRoute.resize(m_vnets);
285  BasicLink *link = link_entry.link;
286  if (link->mVnets.size() == 0) {
287  net->makeExtOutLink(src - (2 * m_nodes), node, link,
288  routing_table_entry);
289  } else {
290  for (int v = 0; v< link->mVnets.size(); v++) {
291  int vnet = link->mVnets[v];
292  linkRoute[vnet] = routing_table_entry[vnet];
293  }
294  net->makeExtOutLink(src - (2 * m_nodes), node, link,
295  linkRoute);
296  }
297  }
298  } else {
299  assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
300  src_dest.first = src;
301  src_dest.second = dest;
302  std::vector<LinkEntry> links = m_link_map[src_dest];
303  for (int l = 0; l < links.size(); l++) {
304  link_entry = links[l];
305  std::vector<NetDest> linkRoute;
306  linkRoute.resize(m_vnets);
307  BasicLink *link = link_entry.link;
308  if (link->mVnets.size() == 0) {
309  net->makeInternalLink(src - (2 * m_nodes),
310  dest - (2 * m_nodes), link, routing_table_entry,
311  link_entry.src_outport_dirn,
312  link_entry.dst_inport_dirn);
313  } else {
314  for (int v = 0; v< link->mVnets.size(); v++) {
315  int vnet = link->mVnets[v];
316  linkRoute[vnet] = routing_table_entry[vnet];
317  }
318  net->makeInternalLink(src - (2 * m_nodes),
319  dest - (2 * m_nodes), link, linkRoute,
320  link_entry.src_outport_dirn,
321  link_entry.dst_inport_dirn);
322  }
323  }
324  }
325 }
326 
327 // The following all-pairs shortest path algorithm is based on the
328 // discussion from Cormen et al., Chapter 26.1.
329 void
330 Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
331  Matrix &inter_switches)
332 {
333  int nodes = current_dist[0].size();
334 
335  // We find the shortest path for each vnet for a given pair of
336  // source and destinations. This is done simply by traversing via
337  // all other nodes and finding the minimum distance.
338  for (int v = 0; v < m_vnets; v++) {
339  // There is a different topology for each vnet. Here we try to
340  // build a topology by finding the minimum number of intermediate
341  // switches needed to reach the destination
342  bool change = true;
343  while (change) {
344  change = false;
345  for (int i = 0; i < nodes; i++) {
346  for (int j = 0; j < nodes; j++) {
347  // We follow an iterative process to build the shortest
348  // path tree:
349  // 1. Start from the direct connection (if there is one,
350  // otherwise assume a hypothetical infinite weight link).
351  // 2. Then we iterate through all other nodes considering
352  // new potential intermediate switches. If we find any
353  // lesser weight combination, we set(update) that as the
354  // new weight between the source and destination.
355  // 3. Repeat for all pairs of nodes.
356  // 4. Go to step 1 if there was any new update done in
357  // Step 2.
358  int minimum = current_dist[v][i][j];
359  int previous_minimum = minimum;
360  int intermediate_switch = -1;
361  for (int k = 0; k < nodes; k++) {
362  minimum = std::min(minimum,
363  current_dist[v][i][k] + current_dist[v][k][j]);
364  if (previous_minimum != minimum) {
365  intermediate_switch = k;
366  inter_switches[i][j][v] =
367  inter_switches[i][k][v] +
368  inter_switches[k][j][v] + 1;
369  }
370  previous_minimum = minimum;
371  }
372  if (current_dist[v][i][j] != minimum) {
373  change = true;
374  current_dist[v][i][j] = minimum;
375  assert(intermediate_switch >= 0);
376  assert(intermediate_switch < latencies[i].size());
377  latencies[i][j][v] =
378  latencies[i][intermediate_switch][v] +
379  latencies[intermediate_switch][j][v];
380  }
381  }
382  }
383  }
384  }
385 }
386 
387 Matrix
388 Topology::shortest_path(const Matrix &weights, Matrix &latencies,
389  Matrix &inter_switches)
390 {
391  Matrix dist = weights;
392  extend_shortest_path(dist, latencies, inter_switches);
393  return dist;
394 }
395 
396 bool
398  SwitchID final, const Matrix &weights,
399  const Matrix &dist, int vnet)
400 {
401  return weights[vnet][src][next] + dist[vnet][next][final] ==
402  dist[vnet][src][final];
403 }
404 
405 NetDest
407  const Matrix &weights, const Matrix &dist,
408  int vnet)
409 {
410  NetDest result;
411  int d = 0;
412  int machines;
413  int max_machines;
414 
415  machines = MachineType_NUM;
416  max_machines = MachineType_base_number(MachineType_NUM);
417 
418  for (int m = 0; m < machines; m++) {
419  for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
420  // we use "d+max_machines" below since the "destination"
421  // switches for the machines are numbered
422  // [MachineType_base_number(MachineType_NUM)...
423  // 2*MachineType_base_number(MachineType_NUM)-1] for the
424  // component network
425  if (link_is_shortest_path_to_node(src, next, d + max_machines,
426  weights, dist, vnet)) {
427  MachineID mach = {(MachineType)m, i};
428  result.add(mach);
429  }
430  d++;
431  }
432  }
433 
434  DPRINTF(RubyNetwork, "Returning shortest path\n"
435  "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
436  "src: %d, next: %d, vnet:%d result: %s\n",
437  (src-(2*max_machines)), (next-(2*max_machines)),
438  src, next, vnet, result);
439 
440  return result;
441 }
NetDest::add
void add(MachineID newElement)
Definition: NetDest.cc:39
Topology::makeLink
void makeLink(Network *net, SwitchID src, SwitchID dest, std::vector< NetDest > &routing_table_entry)
Definition: Topology.cc:244
AbstractController::getVersion
NodeID getVersion() const
Definition: AbstractController.hh:83
LinkEntry::link
BasicLink * link
Definition: Topology.hh:66
Topology::extend_shortest_path
void extend_shortest_path(Matrix &current_dist, Matrix &latencies, Matrix &inter_switches)
Definition: Topology.cc:330
Topology::m_nodes
const uint32_t m_nodes
Definition: Topology.hh:107
ArmISA::i
Bitfield< 7 > i
Definition: miscregs_types.hh:63
Network::makeExtOutLink
virtual void makeExtOutLink(SwitchID src, NodeID dest, BasicLink *link, std::vector< NetDest > &routing_table_entry)=0
AbstractController.hh
std::vector< BasicExtLink * >
AbstractController
Definition: AbstractController.hh:76
MachineID
Definition: MachineID.hh:50
LinkEntry::dst_inport_dirn
PortDirection dst_inport_dirn
Definition: Topology.hh:68
Topology::m_vnets
int m_vnets
Definition: Topology.hh:109
ArmISA::j
Bitfield< 24 > j
Definition: miscregs_types.hh:54
Network::makeExtInLink
virtual void makeExtInLink(NodeID src, SwitchID dest, BasicLink *link, std::vector< NetDest > &routing_table_entry)=0
MipsISA::k
Bitfield< 23 > k
Definition: dt_constants.hh:78
DPRINTF
#define DPRINTF(x,...)
Definition: trace.hh:237
ArmISA::d
Bitfield< 9 > d
Definition: miscregs_types.hh:60
LinkEntry
Definition: Topology.hh:64
BasicRouter
Definition: BasicRouter.hh:39
Topology::m_number_of_switches
const uint32_t m_number_of_switches
Definition: Topology.hh:108
std::pair
STL pair class.
Definition: stl.hh:58
Topology::link_is_shortest_path_to_node
bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, const Matrix &weights, const Matrix &dist, int vnet)
Definition: Topology.cc:397
Network
Definition: Network.hh:76
Topology::m_link_map
LinkMap m_link_map
Definition: Topology.hh:114
Stats::dist
const FlagsType dist
Print the distribution.
Definition: info.hh:56
Topology.hh
Topology::shortest_path
Matrix shortest_path(const Matrix &weights, Matrix &latencies, Matrix &inter_switches)
Definition: Topology.cc:388
Network.hh
Network::makeInternalLink
virtual void makeInternalLink(SwitchID src, SwitchID dest, BasicLink *link, std::vector< NetDest > &routing_table_entry, PortDirection src_outport, PortDirection dst_inport)=0
INFINITE_LATENCY
const int INFINITE_LATENCY
Definition: Topology.cc:41
Topology::shortest_path_to_node
NetDest shortest_path_to_node(SwitchID src, SwitchID next, const Matrix &weights, const Matrix &dist, int vnet)
Definition: Topology.cc:406
AbstractController::getType
MachineType getType() const
Definition: AbstractController.hh:84
Topology::m_int_link_vector
std::vector< BasicIntLink * > m_int_link_vector
Definition: Topology.hh:112
Topology::createLinks
void createLinks(Network *net)
Definition: Topology.cc:109
LinkEntry::src_outport_dirn
PortDirection src_outport_dirn
Definition: Topology.hh:67
PortDirection
std::string PortDirection
Definition: Topology.hh:62
NodeID
unsigned int NodeID
Definition: TypeDefines.hh:34
Topology::Topology
Topology(uint32_t num_nodes, uint32_t num_routers, uint32_t num_vnets, const std::vector< BasicExtLink * > &ext_links, const std::vector< BasicIntLink * > &int_links)
Definition: Topology.cc:50
trace.hh
Topology::addLink
void addLink(SwitchID src, SwitchID dest, BasicLink *link, PortDirection src_outport_dirn="", PortDirection dest_inport_dirn="")
Definition: Topology.cc:212
SimObject::params
const Params & params() const
Definition: sim_object.hh:168
fatal_if
#define fatal_if(cond,...)
Conditional fatal macro that checks the supplied condition and only causes a fatal error if the condi...
Definition: logging.hh:219
MipsISA::l
Bitfield< 5 > l
Definition: pra_constants.hh:320
NetDest
Definition: NetDest.hh:39
ArmISA::v
Bitfield< 28 > v
Definition: miscregs_types.hh:51
NetDest.hh
SwitchID
unsigned int SwitchID
Definition: TypeDefines.hh:35
ArmISA::m
Bitfield< 0 > m
Definition: miscregs_types.hh:389

Generated on Tue Jun 22 2021 15:28:30 for gem5 by doxygen 1.8.17