gem5  v21.0.1.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
cache.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2019 ARM Limited
3  * All rights reserved.
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Copyright (c) 2002-2005 The Regents of The University of Michigan
15  * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
47 #include "mem/cache/cache.hh"
48 
49 #include <cassert>
50 
51 #include "base/compiler.hh"
52 #include "base/logging.hh"
53 #include "base/trace.hh"
54 #include "base/types.hh"
55 #include "debug/Cache.hh"
56 #include "debug/CacheTags.hh"
57 #include "debug/CacheVerbose.hh"
58 #include "enums/Clusivity.hh"
59 #include "mem/cache/cache_blk.hh"
60 #include "mem/cache/mshr.hh"
61 #include "mem/cache/tags/base.hh"
63 #include "mem/request.hh"
64 #include "params/Cache.hh"
65 
67  : BaseCache(p, p.system->cacheLineSize()),
68  doFastWrites(true)
69 {
70  assert(p.tags);
71  assert(p.replacement_policy);
72 }
73 
74 void
76  bool deferred_response, bool pending_downgrade)
77 {
78  BaseCache::satisfyRequest(pkt, blk);
79 
80  if (pkt->isRead()) {
81  // determine if this read is from a (coherent) cache or not
82  if (pkt->fromCache()) {
83  assert(pkt->getSize() == blkSize);
84  // special handling for coherent block requests from
85  // upper-level caches
86  if (pkt->needsWritable()) {
87  // sanity check
88  assert(pkt->cmd == MemCmd::ReadExReq ||
90  assert(!pkt->hasSharers());
91 
92  // if we have a dirty copy, make sure the recipient
93  // keeps it marked dirty (in the modified state)
94  if (blk->isSet(CacheBlk::DirtyBit)) {
95  pkt->setCacheResponding();
97  }
98  } else if (blk->isSet(CacheBlk::WritableBit) &&
99  !pending_downgrade && !pkt->hasSharers() &&
100  pkt->cmd != MemCmd::ReadCleanReq) {
101  // we can give the requestor a writable copy on a read
102  // request if:
103  // - we have a writable copy at this level (& below)
104  // - we don't have a pending snoop from below
105  // signaling another read request
106  // - no other cache above has a copy (otherwise it
107  // would have set hasSharers flag when
108  // snooping the packet)
109  // - the read has explicitly asked for a clean
110  // copy of the line
111  if (blk->isSet(CacheBlk::DirtyBit)) {
112  // special considerations if we're owner:
113  if (!deferred_response) {
114  // respond with the line in Modified state
115  // (cacheResponding set, hasSharers not set)
116  pkt->setCacheResponding();
117 
118  // if this cache is mostly inclusive, we
119  // keep the block in the Exclusive state,
120  // and pass it upwards as Modified
121  // (writable and dirty), hence we have
122  // multiple caches, all on the same path
123  // towards memory, all considering the
124  // same block writable, but only one
125  // considering it Modified
126 
127  // we get away with multiple caches (on
128  // the same path to memory) considering
129  // the block writeable as we always enter
130  // the cache hierarchy through a cache,
131  // and first snoop upwards in all other
132  // branches
134  } else {
135  // if we're responding after our own miss,
136  // there's a window where the recipient didn't
137  // know it was getting ownership and may not
138  // have responded to snoops correctly, so we
139  // have to respond with a shared line
140  pkt->setHasSharers();
141  }
142  }
143  } else {
144  // otherwise only respond with a shared copy
145  pkt->setHasSharers();
146  }
147  }
148  }
149 }
150 
152 //
153 // Access path: requests coming in from the CPU side
154 //
156 
157 bool
159  PacketList &writebacks)
160 {
161 
162  if (pkt->req->isUncacheable()) {
163  assert(pkt->isRequest());
164 
165  chatty_assert(!(isReadOnly && pkt->isWrite()),
166  "Should never see a write in a read-only cache %s\n",
167  name());
168 
169  DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
170 
171  // flush and invalidate any existing block
172  CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
173  if (old_blk && old_blk->isValid()) {
174  BaseCache::evictBlock(old_blk, writebacks);
175  }
176 
177  blk = nullptr;
178  // lookupLatency is the latency in case the request is uncacheable.
179  lat = lookupLatency;
180  return false;
181  }
182 
183  return BaseCache::access(pkt, blk, lat, writebacks);
184 }
185 
186 void
187 Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
188 {
189  while (!writebacks.empty()) {
190  PacketPtr wbPkt = writebacks.front();
191  // We use forwardLatency here because we are copying writebacks to
192  // write buffer.
193 
194  // Call isCachedAbove for Writebacks, CleanEvicts and
195  // WriteCleans to discover if the block is cached above.
196  if (isCachedAbove(wbPkt)) {
197  if (wbPkt->cmd == MemCmd::CleanEvict) {
198  // Delete CleanEvict because cached copies exist above. The
199  // packet destructor will delete the request object because
200  // this is a non-snoop request packet which does not require a
201  // response.
202  delete wbPkt;
203  } else if (wbPkt->cmd == MemCmd::WritebackClean) {
204  // clean writeback, do not send since the block is
205  // still cached above
206  assert(writebackClean);
207  delete wbPkt;
208  } else {
209  assert(wbPkt->cmd == MemCmd::WritebackDirty ||
210  wbPkt->cmd == MemCmd::WriteClean);
211  // Set BLOCK_CACHED flag in Writeback and send below, so that
212  // the Writeback does not reset the bit corresponding to this
213  // address in the snoop filter below.
214  wbPkt->setBlockCached();
215  allocateWriteBuffer(wbPkt, forward_time);
216  }
217  } else {
218  // If the block is not cached above, send packet below. Both
219  // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
220  // reset the bit corresponding to this address in the snoop filter
221  // below.
222  allocateWriteBuffer(wbPkt, forward_time);
223  }
224  writebacks.pop_front();
225  }
226 }
227 
228 void
230 {
231  while (!writebacks.empty()) {
232  PacketPtr wbPkt = writebacks.front();
233  // Call isCachedAbove for both Writebacks and CleanEvicts. If
234  // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
235  // and discard CleanEvicts.
236  if (isCachedAbove(wbPkt, false)) {
237  if (wbPkt->cmd == MemCmd::WritebackDirty ||
238  wbPkt->cmd == MemCmd::WriteClean) {
239  // Set BLOCK_CACHED flag in Writeback and send below,
240  // so that the Writeback does not reset the bit
241  // corresponding to this address in the snoop filter
242  // below. We can discard CleanEvicts because cached
243  // copies exist above. Atomic mode isCachedAbove
244  // modifies packet to set BLOCK_CACHED flag
245  memSidePort.sendAtomic(wbPkt);
246  }
247  } else {
248  // If the block is not cached above, send packet below. Both
249  // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
250  // reset the bit corresponding to this address in the snoop filter
251  // below.
252  memSidePort.sendAtomic(wbPkt);
253  }
254  writebacks.pop_front();
255  // In case of CleanEvicts, the packet destructor will delete the
256  // request object because this is a non-snoop request packet which
257  // does not require a response.
258  delete wbPkt;
259  }
260 }
261 
262 
263 void
265 {
266  DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
267 
268  // determine if the response is from a snoop request we created
269  // (in which case it should be in the outstandingSnoop), or if we
270  // merely forwarded someone else's snoop request
271  const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
272  outstandingSnoop.end();
273 
274  if (!forwardAsSnoop) {
275  // the packet came from this cache, so sink it here and do not
276  // forward it
277  assert(pkt->cmd == MemCmd::HardPFResp);
278 
279  outstandingSnoop.erase(pkt->req);
280 
281  DPRINTF(Cache, "Got prefetch response from above for addr "
282  "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
283  recvTimingResp(pkt);
284  return;
285  }
286 
287  // forwardLatency is set here because there is a response from an
288  // upper level cache.
289  // To pay the delay that occurs if the packet comes from the bus,
290  // we charge also headerDelay.
291  Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
292  // Reset the timing of the packet.
293  pkt->headerDelay = pkt->payloadDelay = 0;
294  memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
295 }
296 
297 void
299 {
300  // Cache line clearing instructions
301  if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
302  (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0) &&
303  !pkt->isMaskedWrite()) {
304  pkt->cmd = MemCmd::WriteLineReq;
305  DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
306  }
307 }
308 
309 void
311 {
312  // should never be satisfying an uncacheable access as we
313  // flush and invalidate any existing block as part of the
314  // lookup
315  assert(!pkt->req->isUncacheable());
316 
317  BaseCache::handleTimingReqHit(pkt, blk, request_time);
318 }
319 
320 void
322  Tick request_time)
323 {
324  if (pkt->req->isUncacheable()) {
325  // ignore any existing MSHR if we are dealing with an
326  // uncacheable request
327 
328  // should have flushed and have no valid block
329  assert(!blk || !blk->isValid());
330 
331  stats.cmdStats(pkt).mshrUncacheable[pkt->req->requestorId()]++;
332 
333  if (pkt->isWrite()) {
334  allocateWriteBuffer(pkt, forward_time);
335  } else {
336  assert(pkt->isRead());
337 
338  // uncacheable accesses always allocate a new MSHR
339 
340  // Here we are using forward_time, modelling the latency of
341  // a miss (outbound) just as forwardLatency, neglecting the
342  // lookupLatency component.
343  allocateMissBuffer(pkt, forward_time);
344  }
345 
346  return;
347  }
348 
349  Addr blk_addr = pkt->getBlockAddr(blkSize);
350 
351  MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
352 
353  // Software prefetch handling:
354  // To keep the core from waiting on data it won't look at
355  // anyway, send back a response with dummy data. Miss handling
356  // will continue asynchronously. Unfortunately, the core will
357  // insist upon freeing original Packet/Request, so we have to
358  // create a new pair with a different lifecycle. Note that this
359  // processing happens before any MSHR munging on the behalf of
360  // this request because this new Request will be the one stored
361  // into the MSHRs, not the original.
362  if (pkt->cmd.isSWPrefetch()) {
363  assert(pkt->needsResponse());
364  assert(pkt->req->hasPaddr());
365  assert(!pkt->req->isUncacheable());
366 
367  // There's no reason to add a prefetch as an additional target
368  // to an existing MSHR. If an outstanding request is already
369  // in progress, there is nothing for the prefetch to do.
370  // If this is the case, we don't even create a request at all.
371  PacketPtr pf = nullptr;
372 
373  if (!mshr) {
374  // copy the request and create a new SoftPFReq packet
375  RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(),
376  pkt->req->getSize(),
377  pkt->req->getFlags(),
378  pkt->req->requestorId());
379  pf = new Packet(req, pkt->cmd);
380  pf->allocate();
381  assert(pf->matchAddr(pkt));
382  assert(pf->getSize() == pkt->getSize());
383  }
384 
385  pkt->makeTimingResponse();
386 
387  // request_time is used here, taking into account lat and the delay
388  // charged if the packet comes from the xbar.
389  cpuSidePort.schedTimingResp(pkt, request_time);
390 
391  // If an outstanding request is in progress (we found an
392  // MSHR) this is set to null
393  pkt = pf;
394  }
395 
396  BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
397 }
398 
399 void
401 {
402  DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
403 
405 
406  if (pkt->cacheResponding()) {
407  // a cache above us (but not where the packet came from) is
408  // responding to the request, in other words it has the line
409  // in Modified or Owned state
410  DPRINTF(Cache, "Cache above responding to %s: not responding\n",
411  pkt->print());
412 
413  // if the packet needs the block to be writable, and the cache
414  // that has promised to respond (setting the cache responding
415  // flag) is not providing writable (it is in Owned rather than
416  // the Modified state), we know that there may be other Shared
417  // copies in the system; go out and invalidate them all
418  assert(pkt->needsWritable() && !pkt->responderHadWritable());
419 
420  // an upstream cache that had the line in Owned state
421  // (dirty, but not writable), is responding and thus
422  // transferring the dirty line from one branch of the
423  // cache hierarchy to another
424 
425  // send out an express snoop and invalidate all other
426  // copies (snooping a packet that needs writable is the
427  // same as an invalidation), thus turning the Owned line
428  // into a Modified line, note that we don't invalidate the
429  // block in the current cache or any other cache on the
430  // path to memory
431 
432  // create a downstream express snoop with cleared packet
433  // flags, there is no need to allocate any data as the
434  // packet is merely used to co-ordinate state transitions
435  Packet *snoop_pkt = new Packet(pkt, true, false);
436 
437  // also reset the bus time that the original packet has
438  // not yet paid for
439  snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
440 
441  // make this an instantaneous express snoop, and let the
442  // other caches in the system know that the another cache
443  // is responding, because we have found the authorative
444  // copy (Modified or Owned) that will supply the right
445  // data
446  snoop_pkt->setExpressSnoop();
447  snoop_pkt->setCacheResponding();
448 
449  // this express snoop travels towards the memory, and at
450  // every crossbar it is snooped upwards thus reaching
451  // every cache in the system
452  M5_VAR_USED bool success = memSidePort.sendTimingReq(snoop_pkt);
453  // express snoops always succeed
454  assert(success);
455 
456  // main memory will delete the snoop packet
457 
458  // queue for deletion, as opposed to immediate deletion, as
459  // the sending cache is still relying on the packet
460  pendingDelete.reset(pkt);
461 
462  // no need to take any further action in this particular cache
463  // as an upstram cache has already committed to responding,
464  // and we have already sent out any express snoops in the
465  // section above to ensure all other copies in the system are
466  // invalidated
467  return;
468  }
469 
471 }
472 
473 PacketPtr
475  bool needsWritable,
476  bool is_whole_line_write) const
477 {
478  // should never see evictions here
479  assert(!cpu_pkt->isEviction());
480 
481  bool blkValid = blk && blk->isValid();
482 
483  if (cpu_pkt->req->isUncacheable() ||
484  (!blkValid && cpu_pkt->isUpgrade()) ||
485  cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
486  // uncacheable requests and upgrades from upper-level caches
487  // that missed completely just go through as is
488  return nullptr;
489  }
490 
491  assert(cpu_pkt->needsResponse());
492 
493  MemCmd cmd;
494  // @TODO make useUpgrades a parameter.
495  // Note that ownership protocols require upgrade, otherwise a
496  // write miss on a shared owned block will generate a ReadExcl,
497  // which will clobber the owned copy.
498  const bool useUpgrades = true;
499  assert(cpu_pkt->cmd != MemCmd::WriteLineReq || is_whole_line_write);
500  if (is_whole_line_write) {
501  assert(!blkValid || !blk->isSet(CacheBlk::WritableBit));
502  // forward as invalidate to all other caches, this gives us
503  // the line in Exclusive state, and invalidates all other
504  // copies
505  cmd = MemCmd::InvalidateReq;
506  } else if (blkValid && useUpgrades) {
507  // only reason to be here is that blk is read only and we need
508  // it to be writable
509  assert(needsWritable);
510  assert(!blk->isSet(CacheBlk::WritableBit));
511  cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
512  } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
513  cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
514  // Even though this SC will fail, we still need to send out the
515  // request and get the data to supply it to other snoopers in the case
516  // where the determination the StoreCond fails is delayed due to
517  // all caches not being on the same local bus.
519  } else {
520  // block is invalid
521 
522  // If the request does not need a writable there are two cases
523  // where we need to ensure the response will not fetch the
524  // block in dirty state:
525  // * this cache is read only and it does not perform
526  // writebacks,
527  // * this cache is mostly exclusive and will not fill (since
528  // it does not fill it will have to writeback the dirty data
529  // immediately which generates uneccesary writebacks).
530  bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
531  cmd = needsWritable ? MemCmd::ReadExReq :
532  (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
533  }
534  PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
535 
536  // if there are upstream caches that have already marked the
537  // packet as having sharers (not passing writable), pass that info
538  // downstream
539  if (cpu_pkt->hasSharers() && !needsWritable) {
540  // note that cpu_pkt may have spent a considerable time in the
541  // MSHR queue and that the information could possibly be out
542  // of date, however, there is no harm in conservatively
543  // assuming the block has sharers
544  pkt->setHasSharers();
545  DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
546  __func__, cpu_pkt->print(), pkt->print());
547  }
548 
549  // the packet should be block aligned
550  assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
551 
552  pkt->allocate();
553  DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
554  cpu_pkt->print());
555  return pkt;
556 }
557 
558 
559 Cycles
561  PacketList &writebacks)
562 {
563  // deal with the packets that go through the write path of
564  // the cache, i.e. any evictions and writes
565  if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
566  (pkt->req->isUncacheable() && pkt->isWrite())) {
567  Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
568 
569  // at this point, if the request was an uncacheable write
570  // request, it has been satisfied by a memory below and the
571  // packet carries the response back
572  assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
573  pkt->isResponse());
574 
575  return latency;
576  }
577 
578  // only misses left
579 
580  PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable(),
581  pkt->isWholeLineWrite(blkSize));
582 
583  bool is_forward = (bus_pkt == nullptr);
584 
585  if (is_forward) {
586  // just forwarding the same request to the next level
587  // no local cache operation involved
588  bus_pkt = pkt;
589  }
590 
591  DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
592  bus_pkt->print());
593 
594 #if TRACING_ON
595  const std::string old_state = blk ? blk->print() : "";
596 #endif
597 
598  Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
599 
600  bool is_invalidate = bus_pkt->isInvalidate();
601 
602  // We are now dealing with the response handling
603  DPRINTF(Cache, "%s: Receive response: %s for %s\n", __func__,
604  bus_pkt->print(), old_state);
605 
606  // If packet was a forward, the response (if any) is already
607  // in place in the bus_pkt == pkt structure, so we don't need
608  // to do anything. Otherwise, use the separate bus_pkt to
609  // generate response to pkt and then delete it.
610  if (!is_forward) {
611  if (pkt->needsResponse()) {
612  assert(bus_pkt->isResponse());
613  if (bus_pkt->isError()) {
614  pkt->makeAtomicResponse();
615  pkt->copyError(bus_pkt);
616  } else if (pkt->isWholeLineWrite(blkSize)) {
617  // note the use of pkt, not bus_pkt here.
618 
619  // write-line request to the cache that promoted
620  // the write to a whole line
621  const bool allocate = allocOnFill(pkt->cmd) &&
623  blk = handleFill(bus_pkt, blk, writebacks, allocate);
624  assert(blk != NULL);
625  is_invalidate = false;
626  satisfyRequest(pkt, blk);
627  } else if (bus_pkt->isRead() ||
628  bus_pkt->cmd == MemCmd::UpgradeResp) {
629  // we're updating cache state to allow us to
630  // satisfy the upstream request from the cache
631  blk = handleFill(bus_pkt, blk, writebacks,
632  allocOnFill(pkt->cmd));
633  satisfyRequest(pkt, blk);
634  maintainClusivity(pkt->fromCache(), blk);
635  } else {
636  // we're satisfying the upstream request without
637  // modifying cache state, e.g., a write-through
638  pkt->makeAtomicResponse();
639  }
640  }
641  delete bus_pkt;
642  }
643 
644  if (is_invalidate && blk && blk->isValid()) {
645  invalidateBlock(blk);
646  }
647 
648  return latency;
649 }
650 
651 Tick
653 {
655 
656  // follow the same flow as in recvTimingReq, and check if a cache
657  // above us is responding
658  if (pkt->cacheResponding()) {
659  assert(!pkt->req->isCacheInvalidate());
660  DPRINTF(Cache, "Cache above responding to %s: not responding\n",
661  pkt->print());
662 
663  // if a cache is responding, and it had the line in Owned
664  // rather than Modified state, we need to invalidate any
665  // copies that are not on the same path to memory
666  assert(pkt->needsWritable() && !pkt->responderHadWritable());
667 
668  return memSidePort.sendAtomic(pkt);
669  }
670 
671  return BaseCache::recvAtomic(pkt);
672 }
673 
674 
676 //
677 // Response handling: responses from the memory side
678 //
680 
681 
682 void
684 {
685  QueueEntry::Target *initial_tgt = mshr->getTarget();
686  // First offset for critical word first calculations
687  const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
688 
689  const bool is_error = pkt->isError();
690  // allow invalidation responses originating from write-line
691  // requests to be discarded
692  bool is_invalidate = pkt->isInvalidate() &&
693  !mshr->wasWholeLineWrite;
694 
695  MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
696  for (auto &target: targets) {
697  Packet *tgt_pkt = target.pkt;
698  switch (target.source) {
700  Tick completion_time;
701  // Here we charge on completion_time the delay of the xbar if the
702  // packet comes from it, charged on headerDelay.
703  completion_time = pkt->headerDelay;
704 
705  // Software prefetch handling for cache closest to core
706  if (tgt_pkt->cmd.isSWPrefetch()) {
707  if (tgt_pkt->needsWritable()) {
708  // All other copies of the block were invalidated and we
709  // have an exclusive copy.
710 
711  // The coherence protocol assumes that if we fetched an
712  // exclusive copy of the block, we have the intention to
713  // modify it. Therefore the MSHR for the PrefetchExReq has
714  // been the point of ordering and this cache has commited
715  // to respond to snoops for the block.
716  //
717  // In most cases this is true anyway - a PrefetchExReq
718  // will be followed by a WriteReq. However, if that
719  // doesn't happen, the block is not marked as dirty and
720  // the cache doesn't respond to snoops that has committed
721  // to do so.
722  //
723  // To avoid deadlocks in cases where there is a snoop
724  // between the PrefetchExReq and the expected WriteReq, we
725  // proactively mark the block as Dirty.
726  assert(blk);
728 
729  panic_if(isReadOnly, "Prefetch exclusive requests from "
730  "read-only cache %s\n", name());
731  }
732 
733  // a software prefetch would have already been ack'd
734  // immediately with dummy data so the core would be able to
735  // retire it. This request completes right here, so we
736  // deallocate it.
737  delete tgt_pkt;
738  break; // skip response
739  }
740 
741  // unlike the other packet flows, where data is found in other
742  // caches or memory and brought back, write-line requests always
743  // have the data right away, so the above check for "is fill?"
744  // cannot actually be determined until examining the stored MSHR
745  // state. We "catch up" with that logic here, which is duplicated
746  // from above.
747  if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
748  assert(!is_error);
749  assert(blk);
750  assert(blk->isSet(CacheBlk::WritableBit));
751  }
752 
753  // Here we decide whether we will satisfy the target using
754  // data from the block or from the response. We use the
755  // block data to satisfy the request when the block is
756  // present and valid and in addition the response in not
757  // forwarding data to the cache above (we didn't fill
758  // either); otherwise we use the packet data.
759  if (blk && blk->isValid() &&
760  (!mshr->isForward || !pkt->hasData())) {
761  satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
762 
763  // How many bytes past the first request is this one
764  int transfer_offset =
765  tgt_pkt->getOffset(blkSize) - initial_offset;
766  if (transfer_offset < 0) {
767  transfer_offset += blkSize;
768  }
769 
770  // If not critical word (offset) return payloadDelay.
771  // responseLatency is the latency of the return path
772  // from lower level caches/memory to an upper level cache or
773  // the core.
774  completion_time += clockEdge(responseLatency) +
775  (transfer_offset ? pkt->payloadDelay : 0);
776 
777  assert(!tgt_pkt->req->isUncacheable());
778 
779  assert(tgt_pkt->req->requestorId() < system->maxRequestors());
780  stats.cmdStats(tgt_pkt)
781  .missLatency[tgt_pkt->req->requestorId()] +=
782  completion_time - target.recvTime;
783  } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
784  // failed StoreCond upgrade
785  assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
786  tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
787  tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
788  // responseLatency is the latency of the return path
789  // from lower level caches/memory to an upper level cache or
790  // the core.
791  completion_time += clockEdge(responseLatency) +
792  pkt->payloadDelay;
793  tgt_pkt->req->setExtraData(0);
794  } else {
795  if (is_invalidate && blk && blk->isValid()) {
796  // We are about to send a response to a cache above
797  // that asked for an invalidation; we need to
798  // invalidate our copy immediately as the most
799  // up-to-date copy of the block will now be in the
800  // cache above. It will also prevent this cache from
801  // responding (if the block was previously dirty) to
802  // snoops as they should snoop the caches above where
803  // they will get the response from.
804  invalidateBlock(blk);
805  }
806  // not a cache fill, just forwarding response
807  // responseLatency is the latency of the return path
808  // from lower level cahces/memory to the core.
809  completion_time += clockEdge(responseLatency) +
810  pkt->payloadDelay;
811  if (!is_error) {
812  if (pkt->isRead()) {
813  // sanity check
814  assert(pkt->matchAddr(tgt_pkt));
815  assert(pkt->getSize() >= tgt_pkt->getSize());
816 
817  tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
818  } else {
819  // MSHR targets can read data either from the
820  // block or the response pkt. If we can't get data
821  // from the block (i.e., invalid or has old data)
822  // or the response (did not bring in any data)
823  // then make sure that the target didn't expect
824  // any.
825  assert(!tgt_pkt->hasRespData());
826  }
827  }
828 
829  // this response did not allocate here and therefore
830  // it was not consumed, make sure that any flags are
831  // carried over to cache above
832  tgt_pkt->copyResponderFlags(pkt);
833  }
834  tgt_pkt->makeTimingResponse();
835  // if this packet is an error copy that to the new packet
836  if (is_error)
837  tgt_pkt->copyError(pkt);
838  if (tgt_pkt->cmd == MemCmd::ReadResp &&
839  (is_invalidate || mshr->hasPostInvalidate())) {
840  // If intermediate cache got ReadRespWithInvalidate,
841  // propagate that. Response should not have
842  // isInvalidate() set otherwise.
844  DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
845  tgt_pkt->print());
846  }
847  // Reset the bus additional time as it is now accounted for
848  tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
849  cpuSidePort.schedTimingResp(tgt_pkt, completion_time);
850  break;
851 
853  assert(tgt_pkt->cmd == MemCmd::HardPFReq);
854  if (blk)
855  blk->setPrefetched();
856  delete tgt_pkt;
857  break;
858 
860  // I don't believe that a snoop can be in an error state
861  assert(!is_error);
862  // response to snoop request
863  DPRINTF(Cache, "processing deferred snoop...\n");
864  // If the response is invalidating, a snooping target can
865  // be satisfied if it is also invalidating. If the reponse is, not
866  // only invalidating, but more specifically an InvalidateResp and
867  // the MSHR was created due to an InvalidateReq then a cache above
868  // is waiting to satisfy a WriteLineReq. In this case even an
869  // non-invalidating snoop is added as a target here since this is
870  // the ordering point. When the InvalidateResp reaches this cache,
871  // the snooping target will snoop further the cache above with the
872  // WriteLineReq.
873  assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
874  pkt->req->isCacheMaintenance() ||
875  mshr->hasPostInvalidate());
876  handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
877  break;
878 
879  default:
880  panic("Illegal target->source enum %d\n", target.source);
881  }
882  }
883 
884  maintainClusivity(targets.hasFromCache, blk);
885 
886  if (blk && blk->isValid()) {
887  // an invalidate response stemming from a write line request
888  // should not invalidate the block, so check if the
889  // invalidation should be discarded
890  if (is_invalidate || mshr->hasPostInvalidate()) {
891  invalidateBlock(blk);
892  } else if (mshr->hasPostDowngrade()) {
894  }
895  }
896 }
897 
898 PacketPtr
900 {
902  writebackBlk(blk) : cleanEvictBlk(blk);
903 
904  invalidateBlock(blk);
905 
906  return pkt;
907 }
908 
909 PacketPtr
911 {
912  assert(!writebackClean);
913  assert(blk && blk->isValid() && !blk->isSet(CacheBlk::DirtyBit));
914 
915  // Creating a zero sized write, a message to the snoop filter
916  RequestPtr req = std::make_shared<Request>(
918 
919  if (blk->isSecure())
920  req->setFlags(Request::SECURE);
921 
922  req->taskId(blk->getTaskId());
923 
924  PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
925  pkt->allocate();
926  DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
927 
928  return pkt;
929 }
930 
932 //
933 // Snoop path: requests coming in from the memory side
934 //
936 
937 void
938 Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
939  bool already_copied, bool pending_inval)
940 {
941  // sanity check
942  assert(req_pkt->isRequest());
943  assert(req_pkt->needsResponse());
944 
945  DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
946  // timing-mode snoop responses require a new packet, unless we
947  // already made a copy...
948  PacketPtr pkt = req_pkt;
949  if (!already_copied)
950  // do not clear flags, and allocate space for data if the
951  // packet needs it (the only packets that carry data are read
952  // responses)
953  pkt = new Packet(req_pkt, false, req_pkt->isRead());
954 
955  assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
956  pkt->hasSharers());
957  pkt->makeTimingResponse();
958  if (pkt->isRead()) {
959  pkt->setDataFromBlock(blk_data, blkSize);
960  }
961  if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
962  // Assume we defer a response to a read from a far-away cache
963  // A, then later defer a ReadExcl from a cache B on the same
964  // bus as us. We'll assert cacheResponding in both cases, but
965  // in the latter case cacheResponding will keep the
966  // invalidation from reaching cache A. This special response
967  // tells cache A that it gets the block to satisfy its read,
968  // but must immediately invalidate it.
970  }
971  // Here we consider forward_time, paying for just forward latency and
972  // also charging the delay provided by the xbar.
973  // forward_time is used as send_time in next allocateWriteBuffer().
974  Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
975  // Here we reset the timing of the packet.
976  pkt->headerDelay = pkt->payloadDelay = 0;
977  DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
978  pkt->print(), forward_time);
979  memSidePort.schedTimingSnoopResp(pkt, forward_time);
980 }
981 
982 uint32_t
983 Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
984  bool is_deferred, bool pending_inval)
985 {
986  DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
987  // deferred snoops can only happen in timing mode
988  assert(!(is_deferred && !is_timing));
989  // pending_inval only makes sense on deferred snoops
990  assert(!(pending_inval && !is_deferred));
991  assert(pkt->isRequest());
992 
993  // the packet may get modified if we or a forwarded snooper
994  // responds in atomic mode, so remember a few things about the
995  // original packet up front
996  bool invalidate = pkt->isInvalidate();
997  M5_VAR_USED bool needs_writable = pkt->needsWritable();
998 
999  // at the moment we could get an uncacheable write which does not
1000  // have the invalidate flag, and we need a suitable way of dealing
1001  // with this case
1002  panic_if(invalidate && pkt->req->isUncacheable(),
1003  "%s got an invalidating uncacheable snoop request %s",
1004  name(), pkt->print());
1005 
1006  uint32_t snoop_delay = 0;
1007 
1008  if (forwardSnoops) {
1009  // first propagate snoop upward to see if anyone above us wants to
1010  // handle it. save & restore packet src since it will get
1011  // rewritten to be relative to CPU-side bus (if any)
1012  if (is_timing) {
1013  // copy the packet so that we can clear any flags before
1014  // forwarding it upwards, we also allocate data (passing
1015  // the pointer along in case of static data), in case
1016  // there is a snoop hit in upper levels
1017  Packet snoopPkt(pkt, true, true);
1018  snoopPkt.setExpressSnoop();
1019  // the snoop packet does not need to wait any additional
1020  // time
1021  snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1022  cpuSidePort.sendTimingSnoopReq(&snoopPkt);
1023 
1024  // add the header delay (including crossbar and snoop
1025  // delays) of the upward snoop to the snoop delay for this
1026  // cache
1027  snoop_delay += snoopPkt.headerDelay;
1028 
1029  // If this request is a prefetch or clean evict and an upper level
1030  // signals block present, make sure to propagate the block
1031  // presence to the requestor.
1032  if (snoopPkt.isBlockCached()) {
1033  pkt->setBlockCached();
1034  }
1035  // If the request was satisfied by snooping the cache
1036  // above, mark the original packet as satisfied too.
1037  if (snoopPkt.satisfied()) {
1038  pkt->setSatisfied();
1039  }
1040 
1041  // Copy over flags from the snoop response to make sure we
1042  // inform the final destination
1043  pkt->copyResponderFlags(&snoopPkt);
1044  } else {
1045  bool already_responded = pkt->cacheResponding();
1047  if (!already_responded && pkt->cacheResponding()) {
1048  // cache-to-cache response from some upper cache:
1049  // forward response to original requestor
1050  assert(pkt->isResponse());
1051  }
1052  }
1053  }
1054 
1055  bool respond = false;
1056  bool blk_valid = blk && blk->isValid();
1057  if (pkt->isClean()) {
1058  if (blk_valid && blk->isSet(CacheBlk::DirtyBit)) {
1059  DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
1060  __func__, pkt->print(), blk->print());
1061  PacketPtr wb_pkt =
1062  writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1063  PacketList writebacks;
1064  writebacks.push_back(wb_pkt);
1065 
1066  if (is_timing) {
1067  // anything that is merely forwarded pays for the forward
1068  // latency and the delay provided by the crossbar
1069  Tick forward_time = clockEdge(forwardLatency) +
1070  pkt->headerDelay;
1071  doWritebacks(writebacks, forward_time);
1072  } else {
1073  doWritebacksAtomic(writebacks);
1074  }
1075  pkt->setSatisfied();
1076  }
1077  } else if (!blk_valid) {
1078  DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
1079  pkt->print());
1080  if (is_deferred) {
1081  // we no longer have the block, and will not respond, but a
1082  // packet was allocated in MSHR::handleSnoop and we have
1083  // to delete it
1084  assert(pkt->needsResponse());
1085 
1086  // we have passed the block to a cache upstream, that
1087  // cache should be responding
1088  assert(pkt->cacheResponding());
1089 
1090  delete pkt;
1091  }
1092  return snoop_delay;
1093  } else {
1094  DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
1095  pkt->print(), blk->print());
1096 
1097  // We may end up modifying both the block state and the packet (if
1098  // we respond in atomic mode), so just figure out what to do now
1099  // and then do it later. We respond to all snoops that need
1100  // responses provided we have the block in dirty state. The
1101  // invalidation itself is taken care of below. We don't respond to
1102  // cache maintenance operations as this is done by the destination
1103  // xbar.
1104  respond = blk->isSet(CacheBlk::DirtyBit) && pkt->needsResponse();
1105 
1107  "Should never have a dirty block in a read-only cache %s\n",
1108  name());
1109  }
1110 
1111  // Invalidate any prefetch's from below that would strip write permissions
1112  // MemCmd::HardPFReq is only observed by upstream caches. After missing
1113  // above and in it's own cache, a new MemCmd::ReadReq is created that
1114  // downstream caches observe.
1115  if (pkt->mustCheckAbove()) {
1116  DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1117  "from lower cache\n", pkt->getAddr(), pkt->print());
1118  pkt->setBlockCached();
1119  return snoop_delay;
1120  }
1121 
1122  if (pkt->isRead() && !invalidate) {
1123  // reading without requiring the line in a writable state
1124  assert(!needs_writable);
1125  pkt->setHasSharers();
1126 
1127  // if the requesting packet is uncacheable, retain the line in
1128  // the current state, otherwhise unset the writable flag,
1129  // which means we go from Modified to Owned (and will respond
1130  // below), remain in Owned (and will respond below), from
1131  // Exclusive to Shared, or remain in Shared
1132  if (!pkt->req->isUncacheable()) {
1134  }
1135  DPRINTF(Cache, "new state is %s\n", blk->print());
1136  }
1137 
1138  if (respond) {
1139  // prevent anyone else from responding, cache as well as
1140  // memory, and also prevent any memory from even seeing the
1141  // request
1142  pkt->setCacheResponding();
1143  if (!pkt->isClean() && blk->isSet(CacheBlk::WritableBit)) {
1144  // inform the cache hierarchy that this cache had the line
1145  // in the Modified state so that we avoid unnecessary
1146  // invalidations (see Packet::setResponderHadWritable)
1147  pkt->setResponderHadWritable();
1148 
1149  // in the case of an uncacheable request there is no point
1150  // in setting the responderHadWritable flag, but since the
1151  // recipient does not care there is no harm in doing so
1152  } else {
1153  // if the packet has needsWritable set we invalidate our
1154  // copy below and all other copies will be invalidates
1155  // through express snoops, and if needsWritable is not set
1156  // we already called setHasSharers above
1157  }
1158 
1159  // if we are returning a writable and dirty (Modified) line,
1160  // we should be invalidating the line
1161  panic_if(!invalidate && !pkt->hasSharers(),
1162  "%s is passing a Modified line through %s, "
1163  "but keeping the block", name(), pkt->print());
1164 
1165  if (is_timing) {
1166  doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1167  } else {
1168  pkt->makeAtomicResponse();
1169  // packets such as upgrades do not actually have any data
1170  // payload
1171  if (pkt->hasData())
1172  pkt->setDataFromBlock(blk->data, blkSize);
1173  }
1174 
1175  // When a block is compressed, it must first be decompressed before
1176  // being read, and this increases the snoop delay.
1177  if (compressor && pkt->isRead()) {
1178  snoop_delay += compressor->getDecompressionLatency(blk);
1179  }
1180  }
1181 
1182  if (!respond && is_deferred) {
1183  assert(pkt->needsResponse());
1184  delete pkt;
1185  }
1186 
1187  // Do this last in case it deallocates block data or something
1188  // like that
1189  if (blk_valid && invalidate) {
1190  invalidateBlock(blk);
1191  DPRINTF(Cache, "new state is %s\n", blk->print());
1192  }
1193 
1194  return snoop_delay;
1195 }
1196 
1197 
1198 void
1200 {
1201  DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1202 
1203  // no need to snoop requests that are not in range
1204  if (!inRange(pkt->getAddr())) {
1205  return;
1206  }
1207 
1208  bool is_secure = pkt->isSecure();
1209  CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1210 
1211  Addr blk_addr = pkt->getBlockAddr(blkSize);
1212  MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1213 
1214  // Update the latency cost of the snoop so that the crossbar can
1215  // account for it. Do not overwrite what other neighbouring caches
1216  // have already done, rather take the maximum. The update is
1217  // tentative, for cases where we return before an upward snoop
1218  // happens below.
1219  pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1221 
1222  // Inform request(Prefetch, CleanEvict or Writeback) from below of
1223  // MSHR hit, set setBlockCached.
1224  if (mshr && pkt->mustCheckAbove()) {
1225  DPRINTF(Cache, "Setting block cached for %s from lower cache on "
1226  "mshr hit\n", pkt->print());
1227  pkt->setBlockCached();
1228  return;
1229  }
1230 
1231  // Let the MSHR itself track the snoop and decide whether we want
1232  // to go ahead and do the regular cache snoop
1233  if (mshr && mshr->handleSnoop(pkt, order++)) {
1234  DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1235  "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1236  mshr->print());
1237 
1238  if (mshr->getNumTargets() > numTarget)
1239  warn("allocating bonus target for snoop"); //handle later
1240  return;
1241  }
1242 
1243  //We also need to check the writeback buffers and handle those
1244  WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
1245  if (wb_entry) {
1246  DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1247  pkt->getAddr(), is_secure ? "s" : "ns");
1248  // Expect to see only Writebacks and/or CleanEvicts here, both of
1249  // which should not be generated for uncacheable data.
1250  assert(!wb_entry->isUncacheable());
1251  // There should only be a single request responsible for generating
1252  // Writebacks/CleanEvicts.
1253  assert(wb_entry->getNumTargets() == 1);
1254  PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1255  assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
1256 
1257  if (pkt->isEviction()) {
1258  // if the block is found in the write queue, set the BLOCK_CACHED
1259  // flag for Writeback/CleanEvict snoop. On return the snoop will
1260  // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1261  // any CleanEvicts from travelling down the memory hierarchy.
1262  pkt->setBlockCached();
1263  DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
1264  "hit\n", __func__, pkt->print());
1265  return;
1266  }
1267 
1268  // conceptually writebacks are no different to other blocks in
1269  // this cache, so the behaviour is modelled after handleSnoop,
1270  // the difference being that instead of querying the block
1271  // state to determine if it is dirty and writable, we use the
1272  // command and fields of the writeback packet
1273  bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
1274  pkt->needsResponse();
1275  bool have_writable = !wb_pkt->hasSharers();
1276  bool invalidate = pkt->isInvalidate();
1277 
1278  if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1279  assert(!pkt->needsWritable());
1280  pkt->setHasSharers();
1281  wb_pkt->setHasSharers();
1282  }
1283 
1284  if (respond) {
1285  pkt->setCacheResponding();
1286 
1287  if (have_writable) {
1288  pkt->setResponderHadWritable();
1289  }
1290 
1291  doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
1292  false, false);
1293  }
1294 
1295  if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
1296  // Invalidation trumps our writeback... discard here
1297  // Note: markInService will remove entry from writeback buffer.
1298  markInService(wb_entry);
1299  delete wb_pkt;
1300  }
1301  }
1302 
1303  // If this was a shared writeback, there may still be
1304  // other shared copies above that require invalidation.
1305  // We could be more selective and return here if the
1306  // request is non-exclusive or if the writeback is
1307  // exclusive.
1308  uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
1309 
1310  // Override what we did when we first saw the snoop, as we now
1311  // also have the cost of the upwards snoops to account for
1312  pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
1314 }
1315 
1316 Tick
1318 {
1319  // no need to snoop requests that are not in range.
1320  if (!inRange(pkt->getAddr())) {
1321  return 0;
1322  }
1323 
1324  CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1325  uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
1326  return snoop_delay + lookupLatency * clockPeriod();
1327 }
1328 
1329 bool
1330 Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
1331 {
1332  if (!forwardSnoops)
1333  return false;
1334  // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
1335  // Writeback snoops into upper level caches to check for copies of the
1336  // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
1337  // packet, the cache can inform the crossbar below of presence or absence
1338  // of the block.
1339  if (is_timing) {
1340  Packet snoop_pkt(pkt, true, false);
1341  snoop_pkt.setExpressSnoop();
1342  // Assert that packet is either Writeback or CleanEvict and not a
1343  // prefetch request because prefetch requests need an MSHR and may
1344  // generate a snoop response.
1345  assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
1346  snoop_pkt.senderState = nullptr;
1347  cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1348  // Writeback/CleanEvict snoops do not generate a snoop response.
1349  assert(!(snoop_pkt.cacheResponding()));
1350  return snoop_pkt.isBlockCached();
1351  } else {
1353  return pkt->isBlockCached();
1354  }
1355 }
1356 
1357 bool
1359 {
1360  assert(mshr);
1361 
1362  // use request from 1st target
1363  PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1364 
1365  if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
1366  DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1367 
1368  // we should never have hardware prefetches to allocated
1369  // blocks
1370  assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
1371 
1372  // We need to check the caches above us to verify that
1373  // they don't have a copy of this block in the dirty state
1374  // at the moment. Without this check we could get a stale
1375  // copy from memory that might get used in place of the
1376  // dirty one.
1377  Packet snoop_pkt(tgt_pkt, true, false);
1378  snoop_pkt.setExpressSnoop();
1379  // We are sending this packet upwards, but if it hits we will
1380  // get a snoop response that we end up treating just like a
1381  // normal response, hence it needs the MSHR as its sender
1382  // state
1383  snoop_pkt.senderState = mshr;
1384  cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1385 
1386  // Check to see if the prefetch was squashed by an upper cache (to
1387  // prevent us from grabbing the line) or if a Check to see if a
1388  // writeback arrived between the time the prefetch was placed in
1389  // the MSHRs and when it was selected to be sent or if the
1390  // prefetch was squashed by an upper cache.
1391 
1392  // It is important to check cacheResponding before
1393  // prefetchSquashed. If another cache has committed to
1394  // responding, it will be sending a dirty response which will
1395  // arrive at the MSHR allocated for this request. Checking the
1396  // prefetchSquash first may result in the MSHR being
1397  // prematurely deallocated.
1398  if (snoop_pkt.cacheResponding()) {
1399  M5_VAR_USED auto r = outstandingSnoop.insert(snoop_pkt.req);
1400  assert(r.second);
1401 
1402  // if we are getting a snoop response with no sharers it
1403  // will be allocated as Modified
1404  bool pending_modified_resp = !snoop_pkt.hasSharers();
1405  markInService(mshr, pending_modified_resp);
1406 
1407  DPRINTF(Cache, "Upward snoop of prefetch for addr"
1408  " %#x (%s) hit\n",
1409  tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
1410  return false;
1411  }
1412 
1413  if (snoop_pkt.isBlockCached()) {
1414  DPRINTF(Cache, "Block present, prefetch squashed by cache. "
1415  "Deallocating mshr target %#x.\n",
1416  mshr->blkAddr);
1417 
1418  // Deallocate the mshr target
1419  if (mshrQueue.forceDeallocateTarget(mshr)) {
1420  // Clear block if this deallocation resulted freed an
1421  // mshr when all had previously been utilized
1423  }
1424 
1425  // given that no response is expected, delete Request and Packet
1426  delete tgt_pkt;
1427 
1428  return false;
1429  }
1430  }
1431 
1432  return BaseCache::sendMSHRQueuePacket(mshr);
1433 }
Cache::outstandingSnoop
std::unordered_set< RequestPtr > outstandingSnoop
Store the outstanding requests that we are expecting snoop responses from so we can determine which s...
Definition: cache.hh:76
MSHR::Target::FromPrefetcher
@ FromPrefetcher
Definition: mshr.hh:130
Packet::isError
bool isError() const
Definition: packet.hh:584
MSHR::Target::FromCPU
@ FromCPU
Definition: mshr.hh:128
Packet::makeAtomicResponse
void makeAtomicResponse()
Definition: packet.hh:1017
BaseCache::clearBlocked
void clearBlocked(BlockedCause cause)
Marks the cache as unblocked for the given cause.
Definition: base.hh:1242
BaseCache::writeBuffer
WriteQueue writeBuffer
Write/writeback buffer.
Definition: base.hh:339
BaseCache::maintainClusivity
void maintainClusivity(bool from_cache, CacheBlk *blk)
Maintain the clusivity of this cache by potentially invalidating a block.
Definition: base.cc:1401
Packet::isResponse
bool isResponse() const
Definition: packet.hh:561
MemCmd::WritebackClean
@ WritebackClean
Definition: packet.hh:90
warn
#define warn(...)
Definition: logging.hh:239
MemCmd::isSWPrefetch
bool isSWPrefetch() const
Definition: packet.hh:225
Request::SECURE
@ SECURE
The request targets the secure memory space.
Definition: request.hh:177
BaseCache::markInService
void markInService(MSHR *mshr, bool pending_modified_resp)
Mark a request as in service (sent downstream in the memory system), effectively making this MSHR the...
Definition: base.hh:400
Packet::makeTimingResponse
void makeTimingResponse()
Definition: packet.hh:1023
Cache::doWritebacksAtomic
void doWritebacksAtomic(PacketList &writebacks) override
Send writebacks down the memory hierarchy in atomic mode.
Definition: cache.cc:229
Packet::cacheResponding
bool cacheResponding() const
Definition: packet.hh:620
QueueEntry::blkAddr
Addr blkAddr
Block aligned address.
Definition: queue_entry.hh:111
MSHR::print
void print(std::ostream &os, int verbosity=0, const std::string &prefix="") const override
Prints the contents of this MSHR for debugging.
Definition: mshr.cc:701
Packet::hasSharers
bool hasSharers() const
Definition: packet.hh:647
Packet::satisfied
bool satisfied() const
Definition: packet.hh:716
Cache::evictBlock
M5_NODISCARD PacketPtr evictBlock(CacheBlk *blk) override
Evict a cache block.
Definition: cache.cc:899
X86ISA::CacheParams
@ CacheParams
Definition: cpuid.cc:41
QueueEntry::Target
A queue entry is holding packets that will be serviced as soon as resources are available.
Definition: queue_entry.hh:83
Packet::copyResponderFlags
void copyResponderFlags(const PacketPtr pkt)
Copy the reponse flags from an input packet to this packet.
Definition: packet.cc:322
BaseCache::handleFill
CacheBlk * handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, bool allocate)
Handle a fill operation caused by a received packet.
Definition: base.cc:1413
Packet::getAddr
Addr getAddr() const
Definition: packet.hh:755
CacheBlk::clearCoherenceBits
void clearCoherenceBits(unsigned bits)
Clear the corresponding coherence bits.
Definition: cache_blk.hh:227
MemCmd::HardPFReq
@ HardPFReq
Definition: packet.hh:95
Cache::recvTimingSnoopReq
void recvTimingSnoopReq(PacketPtr pkt) override
Snoops bus transactions to maintain coherence.
Definition: cache.cc:1199
Packet::setCacheResponding
void setCacheResponding()
Snoop flags.
Definition: packet.hh:614
BaseCache::writebackBlk
PacketPtr writebackBlk(CacheBlk *blk)
Create a writeback request for the given block.
Definition: base.cc:1597
Packet::responderHadWritable
bool responderHadWritable() const
Definition: packet.hh:680
Packet::payloadDelay
uint32_t payloadDelay
The extra pipelining delay from seeing the packet until the end of payload is transmitted by the comp...
Definition: packet.hh:413
cache.hh
BaseCache::system
System * system
System we are currently operating in.
Definition: base.hh:978
mshr.hh
MSHR::getNumTargets
int getNumTargets() const
Returns the current number of allocated targets.
Definition: mshr.hh:422
X86ISA::pf
Bitfield< 2 > pf
Definition: misc.hh:550
Packet::setResponderHadWritable
void setResponderHadWritable()
On responding to a snoop request (which only happens for Modified or Owned lines),...
Definition: packet.hh:674
Packet::hasRespData
bool hasRespData() const
Definition: packet.hh:578
BaseCache::blkSize
const unsigned blkSize
Block size of this cache.
Definition: base.hh:880
MSHRQueue::forceDeallocateTarget
bool forceDeallocateTarget(MSHR *mshr)
Deallocate top target, possibly freeing the MSHR.
Definition: mshr_queue.cc:117
Packet::setHasSharers
void setHasSharers()
On fills, the hasSharers flag is used by the caches in combination with the cacheResponding flag,...
Definition: packet.hh:646
MemCmd::UpgradeReq
@ UpgradeReq
Definition: packet.hh:99
Packet::setSatisfied
void setSatisfied()
Set when a request hits in a cache and the cache is not going to respond.
Definition: packet.hh:710
Packet::isRead
bool isRead() const
Definition: packet.hh:557
Packet::fromCache
bool fromCache() const
Definition: packet.hh:575
MemCmd::CleanEvict
@ CleanEvict
Definition: packet.hh:92
BaseTags::print
std::string print()
Print all tags used.
Definition: base.cc:199
BaseCache::CacheCmdStats::missLatency
Stats::Vector missLatency
Total number of cycles per thread/command spent waiting for a miss.
Definition: base.hh:1004
Tick
uint64_t Tick
Tick count type.
Definition: types.hh:59
BaseCache::memSidePort
MemSidePort memSidePort
Definition: base.hh:331
ResponsePort::sendAtomicSnoop
Tick sendAtomicSnoop(PacketPtr pkt)
Send an atomic snoop request packet, where the data is moved and the state is updated in zero time,...
Definition: port.hh:323
Cache::recvAtomic
Tick recvAtomic(PacketPtr pkt) override
Performs the access specified by the request.
Definition: cache.cc:652
Packet::needsWritable
bool needsWritable() const
Definition: packet.hh:562
Packet::isInvalidate
bool isInvalidate() const
Definition: packet.hh:572
RequestPtr
std::shared_ptr< Request > RequestPtr
Definition: request.hh:86
Packet::req
RequestPtr req
A pointer to the original request.
Definition: packet.hh:341
Packet::isEviction
bool isEviction() const
Definition: packet.hh:573
Packet::isLLSC
bool isLLSC() const
Definition: packet.hh:583
Cache::handleTimingReqHit
void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) override
Definition: cache.cc:310
BaseCache::handleTimingReqHit
virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
Definition: base.cc:220
Packet::setBlockCached
void setBlockCached()
Definition: packet.hh:720
Packet::getSize
unsigned getSize() const
Definition: packet.hh:765
MemCmd::HardPFResp
@ HardPFResp
Definition: packet.hh:97
Packet::isRequest
bool isRequest() const
Definition: packet.hh:560
QueuedResponsePort::schedTimingResp
void schedTimingResp(PacketPtr pkt, Tick when)
Schedule the sending of a timing response.
Definition: qport.hh:90
Request::wbRequestorId
@ wbRequestorId
This requestor id is used for writeback requests by the caches.
Definition: request.hh:247
BaseCache::clusivity
const Enums::Clusivity clusivity
Clusivity with respect to the upstream cache, determining if we fill into both this cache and the cac...
Definition: base.hh:927
MemCmd::ReadRespWithInvalidate
@ ReadRespWithInvalidate
Definition: packet.hh:85
BaseCache::numTarget
const int numTarget
The number of targets for each MSHR.
Definition: base.hh:917
request.hh
BaseCache::forwardLatency
const Cycles forwardLatency
This is the forward latency of the cache.
Definition: base.hh:899
Packet::headerDelay
uint32_t headerDelay
The extra delay from seeing the packet until the header is transmitted.
Definition: packet.hh:395
MSHR::extractServiceableTargets
TargetList extractServiceableTargets(PacketPtr pkt)
Extracts the subset of the targets that can be serviced given a received response.
Definition: mshr.cc:536
Packet::print
void print(std::ostream &o, int verbosity=0, const std::string &prefix="") const
Definition: packet.cc:389
Packet::isSecure
bool isSecure() const
Definition: packet.hh:784
Packet::setData
void setData(const uint8_t *p)
Copy data into the packet from the provided pointer.
Definition: packet.hh:1226
QueueEntry::Target::pkt
const PacketPtr pkt
Pending request packet.
Definition: queue_entry.hh:88
Packet::copyError
void copyError(Packet *pkt)
Definition: packet.hh:753
Cache::isCachedAbove
bool isCachedAbove(PacketPtr pkt, bool is_timing=true)
Send up a snoop request and find cached copies.
Definition: cache.cc:1330
MemCmd::WriteReq
@ WriteReq
Definition: packet.hh:86
ResponsePort::sendTimingSnoopReq
void sendTimingSnoopReq(PacketPtr pkt)
Attempt to send a timing snoop request packet to the request port by calling its corresponding receiv...
Definition: port.hh:384
BaseCache::Blocked_NoMSHRs
@ Blocked_NoMSHRs
Definition: base.hh:105
X86ISA::system
Bitfield< 15 > system
Definition: misc.hh:997
QueueEntry::isSecure
bool isSecure
True if the entry targets the secure memory space.
Definition: queue_entry.hh:117
MemCmd::WriteLineReq
@ WriteLineReq
Definition: packet.hh:98
BaseCache::allocateWriteBuffer
void allocateWriteBuffer(PacketPtr pkt, Tick time)
Definition: base.hh:1178
Packet::isWholeLineWrite
bool isWholeLineWrite(unsigned blk_size)
Definition: packet.hh:588
BaseCache::mshrQueue
MSHRQueue mshrQueue
Miss status registers.
Definition: base.hh:336
MemCmd::WritebackDirty
@ WritebackDirty
Definition: packet.hh:89
BaseCache::regenerateBlkAddr
Addr regenerateBlkAddr(CacheBlk *blk)
Regenerate block address using tags.
Definition: base.cc:178
Packet::matchAddr
bool matchAddr(const Addr addr, const bool is_secure) const
Check if packet corresponds to a given address and address space.
Definition: packet.cc:424
RequestPort::sendTimingReq
bool sendTimingReq(PacketPtr pkt)
Attempt to send a timing request to the responder port by calling its corresponding receive function.
Definition: port.hh:492
BaseCache::cpuSidePort
CpuSidePort cpuSidePort
Definition: base.hh:330
MemCmd::SCUpgradeFailReq
@ SCUpgradeFailReq
Definition: packet.hh:102
Cache::recvAtomicSnoop
Tick recvAtomicSnoop(PacketPtr pkt) override
Snoop for the provided request in the cache and return the estimated time taken.
Definition: cache.cc:1317
Cache::recvTimingSnoopResp
void recvTimingSnoopResp(PacketPtr pkt) override
Handle a snoop response.
Definition: cache.cc:264
DPRINTF
#define DPRINTF(x,...)
Definition: trace.hh:237
BaseCache::allocOnFill
bool allocOnFill(MemCmd cmd) const
Determine whether we should allocate on a fill or not.
Definition: base.hh:433
MemCmd::ReadCleanReq
@ ReadCleanReq
Definition: packet.hh:106
BaseCache::stats
BaseCache::CacheStats stats
MSHR::handleSnoop
bool handleSnoop(PacketPtr target, Counter order)
Definition: mshr.cc:412
MemCmd
Definition: packet.hh:72
BaseCache::pendingDelete
std::unique_ptr< Packet > pendingDelete
Upstream caches need this packet until true is returned, so hold it for deletion until a subsequent c...
Definition: base.hh:394
Packet::getBlockAddr
Addr getBlockAddr(unsigned int blk_size) const
Definition: packet.hh:779
TaggedEntry::isSecure
bool isSecure() const
Check if this block holds data from the secure memory space.
Definition: tagged_entry.hh:61
BaseCache::invalidateBlock
void invalidateBlock(CacheBlk *blk)
Invalidate a cache block.
Definition: base.cc:1568
Cache::recvTimingReq
void recvTimingReq(PacketPtr pkt) override
Performs the access specified by the request.
Definition: cache.cc:400
Cache::handleTimingReqMiss
void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time, Tick request_time) override
Definition: cache.cc:321
Packet::needsResponse
bool needsResponse() const
Definition: packet.hh:571
MipsISA::r
r
Definition: pra_constants.hh:95
BaseCache::recvTimingReq
virtual void recvTimingReq(PacketPtr pkt)
Performs the access specified by the request.
Definition: base.cc:344
Compressor::Base::getDecompressionLatency
Cycles getDecompressionLatency(const CacheBlk *blk)
Get the decompression latency if the block is compressed.
Definition: base.cc:191
Cache::cleanEvictBlk
PacketPtr cleanEvictBlk(CacheBlk *blk)
Create a CleanEvict request for the given block.
Definition: cache.cc:910
QueuedRequestPort::schedTimingSnoopResp
void schedTimingSnoopResp(PacketPtr pkt, Tick when)
Schedule the sending of a timing snoop response.
Definition: qport.hh:155
Clocked::clockEdge
Tick clockEdge(Cycles cycles=Cycles(0)) const
Determine the tick when a cycle begins, by default the current one, but the argument also enables the...
Definition: clocked_object.hh:174
Cache::access
bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, PacketList &writebacks) override
Does all the processing necessary to perform the provided request.
Definition: cache.cc:158
Packet::setDataFromBlock
void setDataFromBlock(const uint8_t *blk_data, int blkSize)
Copy data into the packet from the provided block pointer, which is aligned to the given block size.
Definition: packet.hh:1245
BaseCache::forwardSnoops
bool forwardSnoops
Do we forward snoops from mem side port through to cpu side port?
Definition: base.hh:920
chatty_assert
#define chatty_assert(cond,...)
The chatty assert macro will function like a normal assert, but will allow the specification of addit...
Definition: logging.hh:292
Packet::mustCheckAbove
bool mustCheckAbove() const
Does the request need to check for cached copies of the same block in the memory hierarchy above.
Definition: packet.hh:1358
base.hh
BaseCache::writecleanBlk
PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
Create a writeclean request for the given block.
Definition: base.cc:1647
BaseCache::access
virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, PacketList &writebacks)
Does all the processing necessary to perform the provided request.
Definition: base.cc:1132
BaseCache::isReadOnly
const bool isReadOnly
Is this cache read only, for example the instruction cache, or table-walker cache.
Definition: base.hh:935
Packet::getOffset
Addr getOffset(unsigned int blk_size) const
Definition: packet.hh:774
BaseCache::sendMSHRQueuePacket
virtual bool sendMSHRQueuePacket(MSHR *mshr)
Take an MSHR, turn it into a suitable downstream packet, and send it out.
Definition: base.cc:1771
Packet::snoopDelay
uint32_t snoopDelay
Keep track of the extra delay incurred by snooping upwards before sending a request down the memory s...
Definition: packet.hh:403
Packet::isUpgrade
bool isUpgrade() const
Definition: packet.hh:559
CacheBlk::print
std::string print() const override
Pretty-print tag, set and way, and interpret state bits to readable form including mapping to a MOESI...
Definition: cache_blk.hh:360
compiler.hh
Queue::findMatch
Entry * findMatch(Addr blk_addr, bool is_secure, bool ignore_uncacheable=true) const
Find the first entry that matches the provided address.
Definition: queue.hh:162
WriteQueueEntry::getNumTargets
int getNumTargets() const
Returns the current number of allocated targets.
Definition: write_queue_entry.hh:137
TaggedEntry::isValid
virtual bool isValid() const
Checks if the entry is valid.
Definition: tagged_entry.hh:54
Cache::satisfyRequest
void satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool deferred_response=false, bool pending_downgrade=false) override
Perform any necessary updates to the block and perform any data exchange between the packet and the b...
Definition: cache.cc:75
MSHR::TargetList
Definition: mshr.hh:162
BaseCache::lookupLatency
const Cycles lookupLatency
The latency of tag lookup of a cache.
Definition: base.hh:886
BaseCache
A basic cache interface.
Definition: base.hh:89
BaseCache::allocateMissBuffer
MSHR * allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send=true)
Definition: base.hh:1160
Packet::id
const PacketId id
Definition: packet.hh:338
CacheBlk::getTaskId
uint32_t getTaskId() const
Get the task id associated to this block.
Definition: cache_blk.hh:281
CacheBlk::WritableBit
@ WritableBit
write permission
Definition: cache_blk.hh:77
WriteQueueEntry::getTarget
Target * getTarget() override
Returns a reference to the first target.
Definition: write_queue_entry.hh:150
ProbePoints::Packet
ProbePointArg< PacketInfo > Packet
Packet probe point.
Definition: mem.hh:103
Addr
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:148
Cache::sendMSHRQueuePacket
bool sendMSHRQueuePacket(MSHR *mshr) override
Take an MSHR, turn it into a suitable downstream packet, and send it out.
Definition: cache.cc:1358
BaseCache::satisfyRequest
virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool deferred_response=false, bool pending_downgrade=false)
Perform any necessary updates to the block and perform any data exchange between the packet and the b...
Definition: base.cc:991
CacheBlk::setPrefetched
void setPrefetched()
Marks this blocks as a recently prefetched block.
Definition: cache_blk.hh:254
Cache::promoteWholeLineWrites
void promoteWholeLineWrites(PacketPtr pkt)
Turn line-sized writes into WriteInvalidate transactions.
Definition: cache.cc:298
Clocked::clockPeriod
Tick clockPeriod() const
Definition: clocked_object.hh:214
Cache::handleAtomicReqMiss
Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, PacketList &writebacks) override
Handle a request in atomic mode that missed in this cache.
Definition: cache.cc:560
MemCmd::SCUpgradeReq
@ SCUpgradeReq
Definition: packet.hh:100
Packet::hasData
bool hasData() const
Definition: packet.hh:577
MSHR::getTarget
QueueEntry::Target * getTarget() override
Returns a reference to the first target.
Definition: mshr.hh:449
CacheBlk::isSet
bool isSet(unsigned bits) const
Checks the given coherence bits are set.
Definition: cache_blk.hh:235
CacheBlk::setCoherenceBits
void setCoherenceBits(unsigned bits)
Sets the corresponding coherence bits.
Definition: cache_blk.hh:216
BaseCache::compressor
Compressor::Base * compressor
Compression method being used.
Definition: base.hh:345
BaseCache::writebackClean
const bool writebackClean
Determine if clean lines should be written back or not.
Definition: base.hh:667
SimObject::name
virtual const std::string name() const
Definition: sim_object.hh:182
Packet::cmd
MemCmd cmd
The command field of the packet.
Definition: packet.hh:336
BaseCache::tags
BaseTags * tags
Tag and data Storage.
Definition: base.hh:342
MSHR::wasWholeLineWrite
bool wasWholeLineWrite
Track if we sent this as a whole line write or not.
Definition: mshr.hh:119
panic_if
#define panic_if(cond,...)
Conditional panic macro that checks the supplied condition and only panics if the condition is true a...
Definition: logging.hh:197
BaseCache::evictBlock
virtual M5_NODISCARD PacketPtr evictBlock(CacheBlk *blk)=0
Evict a cache block.
MSHR::Target::FromSnoop
@ FromSnoop
Definition: mshr.hh:129
MSHR::hasPostDowngrade
bool hasPostDowngrade() const
Definition: mshr.hh:326
CacheBlk::data
uint8_t * data
Contains a copy of the data in this block for easy access.
Definition: cache_blk.hh:100
cache_blk.hh
Cache::handleSnoop
uint32_t handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, bool is_deferred, bool pending_inval)
Perform an upward snoop if needed, and update the block state (possibly invalidating the block).
Definition: cache.cc:983
CacheBlk
A Basic Cache block.
Definition: cache_blk.hh:67
System::maxRequestors
RequestorID maxRequestors()
Get the number of requestors registered in the system.
Definition: system.hh:498
WriteQueueEntry
Write queue entry.
Definition: write_queue_entry.hh:65
types.hh
Packet::isClean
bool isClean() const
Definition: packet.hh:574
Clocked::ticksToCycles
Cycles ticksToCycles(Tick t) const
Definition: clocked_object.hh:219
Packet::setExpressSnoop
void setExpressSnoop()
The express snoop flag is used for two purposes.
Definition: packet.hh:662
CacheBlk::DirtyBit
@ DirtyBit
dirty (modified)
Definition: cache_blk.hh:84
BaseCache::handleTimingReqMiss
virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time, Tick request_time)=0
Packet
A Packet is used to encapsulate a transfer between two objects in the memory system (e....
Definition: packet.hh:258
BaseCache::writeAllocator
WriteAllocator *const writeAllocator
The writeAllocator drive optimizations for streaming writes.
Definition: base.hh:380
Packet::isMaskedWrite
bool isMaskedWrite() const
Definition: packet.hh:1374
WriteAllocator::allocate
bool allocate() const
Should writes allocate?
Definition: base.hh:1391
MemCmd::InvalidateReq
@ InvalidateReq
Definition: packet.hh:134
BaseTags::findBlock
virtual CacheBlk * findBlock(Addr addr, bool is_secure) const
Finds the block in the cache without touching it.
Definition: base.cc:77
QueueEntry::isUncacheable
bool isUncacheable() const
Definition: queue_entry.hh:124
logging.hh
Cycles
Cycles is a wrapper class for representing cycle counts, i.e.
Definition: types.hh:79
Packet::isWrite
bool isWrite() const
Definition: packet.hh:558
MemCmd::ReadSharedReq
@ ReadSharedReq
Definition: packet.hh:107
MemCmd::ReadResp
@ ReadResp
Definition: packet.hh:84
MSHR::hasPostInvalidate
bool hasPostInvalidate() const
Definition: mshr.hh:322
BaseCache::CacheCmdStats::mshrUncacheable
Stats::Vector mshrUncacheable
Number of misses that miss in the MSHRs, per command and thread.
Definition: base.hh:1016
MemCmd::InvalidateResp
@ InvalidateResp
Definition: packet.hh:135
Cache::doFastWrites
const bool doFastWrites
This cache should allocate a block on a line-sized write miss.
Definition: cache.hh:69
Cache::createMissPacket
PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, bool needs_writable, bool is_whole_line_write) const override
Create an appropriate downstream bus request packet.
Definition: cache.cc:474
trace.hh
BaseCache::responseLatency
const Cycles responseLatency
The latency of sending reponse to its upper level cache/core on a linefill.
Definition: base.hh:909
MemCmd::WriteClean
@ WriteClean
Definition: packet.hh:91
Cache::doWritebacks
void doWritebacks(PacketList &writebacks, Tick forward_time) override
Insert writebacks into the write buffer.
Definition: cache.cc:187
Packet::senderState
SenderState * senderState
This packet's sender state.
Definition: packet.hh:509
BaseCache::recvTimingResp
virtual void recvTimingResp(PacketPtr pkt)
Handles a response (cache line fill/write ack) from the bus.
Definition: base.cc:412
RequestPort::sendAtomic
Tick sendAtomic(PacketPtr pkt)
Send an atomic request packet, where the data is moved and the state is updated in zero time,...
Definition: port.hh:461
MipsISA::p
Bitfield< 0 > p
Definition: pra_constants.hh:323
std::list
STL list class.
Definition: stl.hh:51
Packet::isBlockCached
bool isBlockCached() const
Definition: packet.hh:721
MSHR::isForward
bool isForward
True if the entry is just a simple forward from an upper level.
Definition: mshr.hh:122
Packet::allocate
void allocate()
Allocate memory for the packet.
Definition: packet.hh:1300
MemCmd::ReadExReq
@ ReadExReq
Definition: packet.hh:104
MemCmd::UpgradeFailResp
@ UpgradeFailResp
Definition: packet.hh:103
Cache
A coherent cache that can be arranged in flexible topologies.
Definition: cache.hh:63
BaseCache::recvAtomic
virtual Tick recvAtomic(PacketPtr pkt)
Performs the access specified by the request.
Definition: base.cc:551
Cache::doTimingSupplyResponse
void doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, bool already_copied, bool pending_inval)
Definition: cache.cc:938
Cache::serviceMSHRTargets
void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk) override
Service non-deferred MSHR targets using the received response.
Definition: cache.cc:683
MemCmd::StoreCondReq
@ StoreCondReq
Definition: packet.hh:109
Packet::getConstPtr
const T * getConstPtr() const
Definition: packet.hh:1167
BaseCache::CacheStats::cmdStats
CacheCmdStats & cmdStats(const PacketPtr p)
Definition: base.hh:1035
BaseCache::inRange
bool inRange(Addr addr) const
Determine if an address is in the ranges covered by this cache.
Definition: base.cc:209
MemCmd::UpgradeResp
@ UpgradeResp
Definition: packet.hh:101
write_queue_entry.hh
MemCmd::StoreCondFailReq
@ StoreCondFailReq
Definition: packet.hh:110
Cache::Cache
Cache(const CacheParams &p)
Instantiates a basic cache object.
Definition: cache.cc:66
panic
#define panic(...)
This implements a cprintf based panic() function.
Definition: logging.hh:171
MSHR
Miss Status and handling Register.
Definition: mshr.hh:69
BaseCache::order
uint64_t order
Increasing order number assigned to each incoming request.
Definition: base.hh:960

Generated on Tue Jun 22 2021 15:28:29 for gem5 by doxygen 1.8.17